Porting the COSMO Weather Model to Manycore CPUs

Felix Thaler
Swiss National Supercomputing
Centre, CSCS
Zurich, Switzerland
felix.thaler@cscs.ch

Mauro Bianco
Swiss National Supercomputing
Centre, CSCS
Lugano, Switzerland
mauro.bianco@cscs.ch

Lukas Mosimann
Swiss National Supercomputing
Centre, CSCS
Zurich, Switzerland
lukas.mosimann@cscs.ch

Stefan Moosbrugger
Federal Institute of Meteorology and
Climatology, MeteoSwiss
Zurich, Switzerland

Hannes Vogt
Swiss National Supercomputing
Centre, CSCS
Zurich, Switzerland
hannes.vogt@cscs.ch

Oliver Fuhrer
Federal Institute of Meteorology and
Climatology, MeteoSwiss
Zurich, Switzerland
oliver.fuhrer@meteoswiss.ch

Torsten Hoefler
Scalable Parallel Computing Lab, ETH
Zurich
Zurich, Switzerland
torsten.hoefler@inf.ethz.ch

Carlos Osuna
Federal Institute of Meteorology and
Climatology, MeteoSwiss
Zurich, Switzerland
carlos.osuna@meteoswiss.ch

Anton Afanasyev
Swiss National Supercomputing
Centre, CSCS
Zurich, Switzerland
anton.afanasyev@cscs.ch

Thomas C. Schulthess
Swiss National Supercomputing
Centre, CSCS
Zurich, Switzerland
schultho@ethz.ch

ABSTRACT

Weather and climate simulations are a major application driver
in high-performance computing (HPC). With the end of Dennard
scaling and Moore’s law, the HPC industry increasingly employs
specialized computation accelerators to increase computational
throughput. Manycore architectures, such as Intel’s Knights Land-
ing (KNL), are a representative example of future processing de-
vices. However, software has to be modified to use these devices
efficiently. In this work, we demonstrate how an existing domain-
specific language that has been designed for CPUs and GPUs can
be extended to Manycore architectures such as KNL. We achieve
comparable performance to the NVIDIA Tesla P100 GPU architec-
ture on hand-tuned representative stencils of the dynamical core
of the COSMO weather model and its radiation code. Further, we
present performance within a factor of two of the P100 of the full
DSL-based GPU-optimized COSMO dycore code. We find that opti-
mizing code to full performance on modern manycore architectures
requires similar effort and hardware knowledge as for GPUs. Fur-
ther, we show limitations of the present approaches, and outline our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PASC ’19, June 12—14, 2019, Zurich, Switzerland

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6770-7/19/06....$15.00
https://doi.org/10.1145/3324989.3325723

lessons learned and possible principles for design of future DSLs
for accelerators in the weather and climate domain.

CCS CONCEPTS

« Applied computing — Earth and atmospheric sciences; «
Software and its engineering — Domain specific languages; »

Computing methodologies — Massively parallel and high-performance

simulations.

KEYWORDS

COSMO, KNL, Supercomputing, Weather Forecasting, Domain-
Specific Languanges

ACM Reference Format:

Felix Thaler, Stefan Moosbrugger, Carlos Osuna, Mauro Bianco, Hannes
Vogt, Anton Afanasyev, Lukas Mosimann, Oliver Fuhrer, Thomas C. Schulthess,
and Torsten Hoefler. 2019. Porting the COSMO Weather Model to Many-
core CPUs. In Proceedings of the Platform for Advanced Scientific Computing
Conference (PASC ’19), June 12-14, 2019, Zurich, Switzerland. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3324989.3325723

1 INTRODUCTION

Weather and climate simulations have been a major user of high-
performance computing systems for decades. Increased model reso-
lution is a key factor to improved predictions of climate change and
global high-resolution simulations will require a new class of super-
computers and software to be run in a reasonable time frame [6, 20].
Classically implemented simulation software — that is, hand-tuned
architecture-specific code — is rapidly falling behind the quickly

https://doi.org/10.1145/3324989.3325723
https://doi.org/10.1145/3324989.3325723

PASC ’19, June 12-14, 2019, Zurich, Switzerland

evolving hardware architectures and compute accelerators. In the
first ten ranks of the TOP500 list of November 2018, host processors
and accelerators of no less than five different vendors are found [22].
A possible approach to making HPC software more future-proof
is to use domain-specific languages (DSLs) or libraries, that allow
to compile the same user source code to optimized architecture-
dependent binary code This should significantly reduce the effort
required to move existing software to new hardware platforms,
as no code changes are required from the DSL user side. Further,
traditional approaches often lead to largely separate code bases
for each supported hardware architecture and thus maintainability
effort increases linearly with the number of supported architectures.
The STELLA-library [10] is an example of a C++-embedded DSL
developed to run the dynamical core of the weather model COSMO
of the Consortium for Small-scale Modeling [3, 4] on CPUs and
GPU accelerators. It is used to run the operational forecasts of the
Swiss Federal Office of Meteorology and Climatology (MeteoSwiss)
on an accelerated GPU system since 2016 [7].

GridTools is a follow-up project based on the success of STELLA.
It is a further step towards exascale computing for the weather and
climate domain and the foundation of the present work. Among
other libraries, GridTools includes a C++-embedded DSL similar
to STELLA, currently supporting CPUs and NVIDIA GPUs. To ex-
pand the number of supported hardware types and gain experience
with additional modern high-bandwidth manycore architectures,
we introduce a new back-end to GridTools, optimized for the Intel’s
Knights Landing (KNL) and future manycore architectures. To eval-
uate the real-world performance portability and user experience,
we tested the back-end on the newly developed GridTools-based
dynamical core of the COSMO weather model.

Further, to get a more complete picture of the KNL performance
characteristics when running COSMO, one of the most relevant
and computationally expensive physical parameterizations of the
model, i.e. radiation, was ported to and optimized for KNL using
OpenMP compiler directives.

Despite the announced discontinuation of the Intel Xeon Phi
product line [13], this work will be relevant for upcoming many-
core architectures such as Intel’s next generation CPUs that base on
similar principles. Further, we could already observe large speedups
compared to the old CPU implementation on modern general-
purpose architectures like Intel Skylake with 512 bit vector reg-
isters.

1.1 Related Work

The literature on accelerating high-performance computations is
vast. Thus, we focus on projects in the context of accelerating
weather and climate applications. Due to the relatively short life-
time of the KNL line, there are few examples in the literature that
demonstrate a full port of a weather model to Intel many-core ar-
chitectures. Pioneering work was done for individual components
of the WRF model. Specific optimizations and performance evalua-
tions on many-core have been reported in [15] for the RRTMGP ra-
diative transfer and for WSM6 [17] and Goddard [16] microphysics
scheme.

The only report on a full weather model ported to KNL known
to the authors is [8] for the NIM model. The model was accelerated

Thaler, et al.

using OpenACC for NVIDIA GPUs and OpenMP for KNL. The
performance evaluation on the full model show speedup of up to
2x for KNL compared to the CPU baseline, and 0.8x with respect to
the P100 NVIDIA GPU.

Further, some work was done on the MPDATA advection scheme
[23]. The authors report a speedup of 2x as compared to a reference
multi-core CPU version.

Even if portability of a weather model retaining a single source
code is achievable using a combination of OpenMP + OpenACC +
MPI, successful implementations delivering performance portabil-
ity with directives across multiple architectures are rarely found
in the literature. In order to address the performance portability
problem, there are numerous approaches in the literature that pro-
vide programming models that hide implementation details and
hardware dependent optimizations using higher level abstractions.
An example is the GridTools library (see Section 1.2). Here, we
briefly summarize other approaches. The Kokkos library [5] pro-
vides C++ constructs for abstracting data layouts and parallel loops
to generate efficient implementations for multiple architectures.
It is more general and low level than GridTools, which provides
higher abstractions specific for weather codes as well as problem-
specific optimizations. The CLAW compiler [2] is a Fortran DSL for
column based weather code computations like those of the physical
parameterizations. Parallel loops and promotions of column data is
automatically performed by the compiler. A similar approach, the
PSyclone DSL [1] provides a Fortran DSL for finite elements/finite
differences dynamical cores. A different approach is the Polly-ACC
compiler framework [9] which automatically maps a sequential
code into an accelerated code using the llvm tools, and avoids the
use of specific programming models. We currently investigate the
applicability of this approach to the COSMO code base.

1.2 GridTools

GridTools is a set of software libraries for weather and climate
applications. It is a joint development effort of the Swiss National
Supercomputing Centre (CSCS) and MeteoSwiss. GridTools pro-
vides an embedded domain-specific language (EDSL) written in
C++, designed for stencil computations. This EDSL can be seen as
the successor of the Stencil Loop Language (STELLA).

When we refer to GridTools in this paper, we consider the stencil
composition EDSL only. This template-based C++ library allows to
define stencils as a composition of several smaller stencil operators.
It allows to run the same user code without any changes on various
hardware architectures. The desired back-end can be chosen at
compile time, currently available are a CPU back-end, a CUDA-
based NVIDIA GPU back-end and now a KNL or more generally a
manycore processor back-end. GridTools takes care of managing
temporary data fields that are passed from operator to operator
in a composed stencil. The user additionally has the possibility
to activate various per-stencil optimizations at compile time, for
example caching of temporary fields, that is highly dependent on
the stencil-specific data access pattern.

1.3 The COSMO Weather Model

The COSMO model is a non-hydrostatic limited area atmospheric
model implemented using finite difference methods in Fortran 90.

Porting the COSMO Weather Model to Manycore CPUs

Like other weather and climate models, it is divided into three
main parts: a dynamical core, a set of physical parameterizations
and data assimilation. The dynamical core solves the Euler equa-
tions on a curvilinear grid, using a split-explicit time integration
scheme [25] with a multistage Runge-Kutta method for integration
of slow processes. Due to the finer grid spacing in the vertical di-
mension, the dynamical core employs implicit discretizations in
the vertical dimension and explicit discretizations in the horizon-
tal. This choice leads to three dominant computational patterns:
horizontal stencils, tridiagonal solvers along the vertical dimension
(with no horizontal data dependencies) and point-wise computa-
tions. Figure 1 shows an overview of the code flow in COSMO.

| —T—
] The Dycore

,:_

Nudging

 merr—

At

Cleanup

Figure 1: COSMO model code flow. The computations inside
the dynamical core are the most expensive part of a time
step, roughly accounting for 60% of the run time. Graphics
based on [21].

The physical parameterizations solve the processes that are not
resolved within the scale of the grid or source and sink terms that
are not represented by the equations of motion, like the radiation.
All physical parameterizations of COSMO contain column based
computational patterns, where computations exhibit only vertical
data dependencies.

A GPU capable version of the model was developed some years
ago and has been used operationally on a supercomputer based on
NVIDIA K80 GPUs at MeteoSwiss since 2016 [7, 10]. The model was
enabled on GPUs based on several technologies and programming
models used to retain a single source code that provides a signifi-
cant performance improvement with respect to the CPU baseline.
The dynamical core was ported to GPU using the STELLA C++
embedded DSL, which provides optimized hardware-dependent
codes for the dynamical core for x86 and GPU architectures [7].
Recent work ported the complete dynamical core using the more
general GridTools library (see Section 1.2), which allows extensions
to other architectures by incorporation of new back-end specific
templates for kernel computations. This allowed to evaluate the
performance of the dynamical core on KNL by means of a newly
developed GridTools back-end presented here. The physical pa-
rameterizations have been fully ported to GPU using OpenACC,
retaining Fortran as the programming language for the model. The
GPU implementation will also serve as a reference for comparison
of the KNL performance results.

PASC ’19, June 12-14, 2019, Zurich, Switzerland

1.4 Intel Xeon Phi “Knights Landing”

The Intel Xeon Phi codenamed Knights Landing (KNL) is a x86-
based manycore processor architecture with up to 72 cores con-
nected by an on-chip mesh network, High Bandwidth Memory
and several boot-time memory configuration options [14, 18]. The
Knights Landing architecture is mainly available as a standalone
CPU — unlike the predecessor Knights Corner that was only avail-
able as a PCle accelerator. An accelerator version of the KNL ar-
chitecture was canceled before release to the public market. In this
work we always refer to the standalone CPU version.

The KNL is organized in 38 tiles, each hosting two x86-compliant
cores with up to four hyper threads. Each core features a private
32 KB L1 data cache, 32 KB L1 instruction cache and two vector-
processing units with 512 bit vector registers and support the AVX-
512F instruction set. This includes exponential and reciprocal in-
structions, gather and scatter instructions with masking support,
and software prefetching instructions.

The tiles are connected by a 2D mesh of rows and columns. The
two cores on each tile share a 1 MB L2 cache. Cache coherency
across the tiles is guaranteed by a distributed tag directory using
the MESIF protocol. Memory IO controllers for the high-bandwidth
MCDRAM and lower bandwidth DDR4 memory also reside in the
mesh. Messages on the mesh can be sent along rows and columns,
which should allow for efficient communication between all tiles.
Out of the 38 tiles, only 32, 34 or 36 are activated, depending on the
exact processor model. See Figure 2 for a graphical depiction of the
architecture.

MCDRAM I MCDRAM

DDR4 DDR4

MCDRAM MCDRAM

B Tile with two cores [Integrated Memory Controller
BB Embedded DRAM Controller Integrated I/O Controller

Figure 2: Intel Knights Landing architecture. Graphics based
on [12].

Similar to GPUs, the KNL features High Bandwidth Memory,
namely 16 GB of multi-channel DRAM (MCDRAM). The peak band-
width of the MCDRAM is more than 400 GB/s, values depend on
the exact processor model. Additionally, up to 384 GB of DDR4
memory with a bandwidth of close to 100 GB/s are available. The
two memory types can be configured at boot time to be either in
flat mode, cache mode, or hybrid mode. In flat mode, the MCDRAM
and DDR memory are exposed to the OS as two different NUMA
domains, and thus it allows to explicitly allocate data either in
MCDRAM or DDR memory. In cache mode, the MCDRAM acts
as a direct-mapped hardware cache for the DDR memory. This is
especially useful for running software that requires a working set
of more than 16 GB but still can profit from the higher MCDRAM
bandwidth. The hybrid mode allows to use either 4 GB or 8 GB of

PASC ’19, June 12-14, 2019, Zurich, Switzerland

the MCDRAM in cache mode and the remaining 12 GB or 8 GB in
flat mode.

An additional configuration capability of the KNL are the cluster
modes. The cluster modes change the way, how cache lines are
assigned to the distributed tag directories spread over the tiles.
There are the five modes All-to-all, Quadrant, Hemisphere, Sub-
NUMA Clustering (SNC) 2, and SNC 4 available. The first three
expose the memory as single NUMA domain per memory type, the
SNC modes divide the mesh into 2 respectively 4 NUMA domains.
The different cluster modes can influence application performance
significantly and the SNC modes require NUMA-aware memory
handling. We refer to Ramos and Hoefler [18] for a more complete
description and very detailed performance evaluation including
complete memory and cache latency, and bandwidth numbers.

1.5 Experimental Setup

Experimental results are collected on the CSCS Cray XC40 KNL
system Grand Tavé featuring 164 Intel KNL compute nodes. Each
node contains an Intel Xeon Phi CPU 7230 processor with 64 cores
running at 1.30 GHz. As the working data set of the COSMO simu-
lations performed in production at MeteoSwiss fits into 16 GB and
the stencil operations of the COSMO dynamical core are mostly
memory bound, we used the KNL in flat memory configuration
with all allocations performed on MCDRAM for the present work.
Further, due to simplicity and good overall performance reported
in [18], we use the Quadrant cluster mode.

For performance comparison, results collected on the CSCS flag-
ship machine Piz Daint are also presented. The Piz Daint GPU
partition is a Cray XC50 system and consists of 5704 nodes with
NVIDIA Tesla P100 GPUs featuring 16 GB of High Bandwidth Mem-
ory.

Additionally, some benchmarks were run on Intel Xeon Gold
6130 CPU. This 16-core chip based on the Intel Skylake general
purpose CPU architecture features AVX-512, similar to the KNL.
Nevertheless, worse performance for stencil codes is expected be-
cause of the smaller peak memory bandwidth due to the lack of
High Bandwidth Memory.

Unless otherwise stated, we used the Intel C++ Compiler version
18.0.2 for compilation, together with the Intel OpenMP implemen-
tation.

All measurements on the benchmark stencils were taken on 100
consecutive runs. On the NVIDIA P100, the GPU frequency was
fixed to the highest possible value (1328 MHz). Note that we used
CUDA managed memory. The required data was always prefetched
to GPU memory before stencil runs. On the KNL, caches were
flushed between all runs. For both platforms, time was measured
using standard C++ facilities. That is, a synchronization (cudaDe-
viceSynchronize()) was placed after each GPU kernel call as we
wanted to measure the execution time of single kernel executions
for run time variance estimation. We verified that the synchroniza-
tion overhead is small compared to the kernel run time.

The data shown in the plots are the median results, error bars
indicate the 90% confidence intervals. Note that in general the KNL
shows larger variability in the performance than the P100. Most
of the time the performance is stable (that is, the top results and
median are close together in the plots), but some outliers exist

Thaler, et al.

depending on number of hyper threads and the data access pattern
(caches). The darker grey areas in the plots highlight the relevant
domain sizes for the production weather forecasts at MeteoSwiss.

2 PERFORMANCE EVALUATION ON
REPRESENTATIVE STENCILS

2.1 Methodology

To understand the complex behavior of the Knights Landing ar-
chitecture in context of stencil operations, we implemented two
stencils of the COSMO weather model in hand-optimized C++ code.
We chose one horizontal and one vertical stencil, representing the
typical code patterns found in the dycore. The horizontal stencil
pattern has data dependencies only in a compact horizontal neigh-
borhood of the mesh and is embarrassingly parallel along all three
axes. Vertical stencils are not stencils in the classical sense, because
they carry dependencies in the vertical direction. They can only
be parallelized along the horizontal dimensions. An example are
tridiagonal linear system solvers [24] that occur due to the implicit
discretization along the vertical.

A fourth-order horizontal diffusion operator and a vertical ad-
vection solver of COSMO were chosen as representative examples
of horizontal and vertical computations respectively.

(1)-(4) show the equations of the horizontal diffusion stencil. ¢;‘ j
refers to the input data field at (sub-)time step n and spatial point
i,J. ¢;‘;1 is the diffused output at step n + 1. sz is the discretized
Laplacian ofgsz as defined in (1). Fl.”+l/2’j and GZj+1/2 defined in (2)
and (3) are limited fluxes along horizontal axes (note the staggered
placement of the fluxes). (4) defines the actual time stepping, where
DZ j is the diffusion coefficient incorporating the time step size
At. Note that the vertical index k was omitted for brevity in all
equations as no offsets are present along the vertical axis, though
the data is of course dependent on k.

n o _ 4qn n n n n
Lij =495 = $ivrj — $imrj — Pijr ~ Pijmr-)
n n . n n n n
[T LN i i (LY = L)i — ¢1) < 0, @)
S1 . T .
1+3.J 0 otherwise,
n n : n n n n
noo o e by B L6 =40 <0 g
P .
i,j+3 0 otherwise,
n+tl _ gn _ pn. n _fn n —_Gn
ij =9~ DPij (FH%,j Fif;,j " Gi,j+% Gi,jf% - @

The equations for the vertical advection stencil are omitted due
to higher complexity. It solves the implicitly discretized advection
equation of the velocity field along the vertical axis using three
tridiagonal systems, one for each velocity component.

Multiple variants were implemented and experiments were per-
formed on the hand-optimized kernels in order to identify the char-
acteristics of the most efficient implementation for KNL. Among
others, different strategies for data storage layouts, stencil operator
fusion with temporary buffers and redundant (on-the-fly) com-
putations, alignment, blocking, loop order, non-temporal stores,
(software) prefetching, and different thread counts were evaluated.

Porting the COSMO Weather Model to Manycore CPUs

2.2 Results

In general, the investigated storage layout of input and output data
was restricted to globally contiguous linear arrays (possibly with
padding), that is, arrays with a linear memory index computed as
n(i,j, k) = siji+s;jj+sik, where i, j are the storage indices along the
horizontal axis, k is the index along the vertical axis and s;, s, s
are the corresponding strides. This is due a design restriction in the
current implementation of GridTools. The limitation was chosen
due to the large variety of stencils in a typical dycore, that would re-
quire different storage block sizes (depending on the access pattern)
for optimal performance and thus layout transformations. Linearly
indexed arrays combined with blocked looping avoid this difficulty.

All data fields were stored in structure-of-array manner, vector
field components in separate scalar arrays. To achieve best possible
memory bandwidth, huge pages were allocated, the unit stride
dimension was padded to 64 bytes and the allocated data was shifted
by some bytes (multiple of 64) to reduce L1 cache set conflicts as
proposed in the Intel 64 and IA-32 Architectures Optimization
Reference Manual [11].

To get an idea of the achievable peak bandwidth! of both the KNL
and the P100 architecture, we first evaluated the performance on a
copy “stencil”, i.e., just a simple memory copy using a linear loop
over the whole domain. Additionally, we implemented the copy
stencil as a blocked 3D loop on KNL (blocked only along horizontal
axes) respectively using a 3D grid in CUDA. The results for different
domain sizes (all with 80 levels along the vertical dimension) when
using double precision (64 bit) floating point numbers are shown
in Figure 3. The P100 shows a higher bandwidth in general, but
the overall curve looks very similar: bandwidth is only saturated
for large domain sizes on both hardware architectures. Further,
blocking reduces performance slightly for the copy stencil on small
domains, but does not have much impact on the overall picture.
Note that the block sizes were auto-tuned using a full 2D search
(restricted to power-of-two sizes along each dimension) and depend
on the domain size. Note also that on KNL some considerations
need to be made to achieve full bandwidth: first, it is mandatory
to use non-temporal store instructions for output data fields and
second, storage strides of power-of-two bytes should be avoided
as they may lead to a large number of L1 or L2 conflict misses.
On smaller domain sizes, the difference in achievable bandwidth
between normal store instructions and non-temporal (“streaming”)
stores is less pronounced as the bandwidth is not limited by the
cache but by the memory itself.

Despite the clear advantage of the P100 on the copy stencil, for
the horizontal diffusion stencil, we achieved performance on the
KNL comparable to the available optimized GridTools implementa-
tions for NVIDIAs Tesla P100 GPU in the best configuration. Due to
the purely horizontal access pattern this stencil prefers a data lay-
out that is contiguous along the horizontal directions, the largest
stride is along the vertical (i.e, 1 = s; < sj < s where s; and
sj are the horizontal strides and s is the vertical one). The loop
order follows the same layout, i.e., the loop along the contiguous
stride s; is innermost. Full parallelism was applied along the verti-
cal dimension, the horizontal domain is divided into blocks. With
the given storage layout, large block sizes along the contiguous

!We calculated the bandwidth from total data size and measured run time.

PASC ’19, June 12-14, 2019, Zurich, Switzerland

500 -
. 400 -
%
~
[aa]
o,
= 300 -
E 200 - =—®— KNL Linear
= KNL Linear NT
100 - —&— KNL Blocked NT
—— P100 Linear
—@— P100 Blocked

0 - | | | | |
322 x 80 642 x 80 1282 x 80 2562 x 80 5122 x 80 10242 x 80
Domain Size

Figure 3: Domain-dependent peak bandwidth for copy sten-
cil on Intel KNL and NVIDIA P100. NT means non-temporal
stores are used. The darker grey area highlights the relevant
domain size range for current production forecasts.

direction are important to exploit hardware prefetching. The best
achieved run times for different domain sizes on KNL and P100 are
shown in Figure 4. Note that the measurements were again taken
using auto-tuned block sizes, found by a full parameter scan. On
the KNL, this always led to a block size filling the whole domain on
the contiguous direction (which shows the importance of hardware
prefetching) and small block sizes along the non-contiguous dimen-
sion. 128 threads were used. For comparison, a simple addition of
two fields with the same blocked data traversal was added. This
has two input and one output fields, like the horizontal diffusion
implementation using on-the-fly computations, but very simple
access pattern and only a single FLOP per grid point.

x10%0
2.00 -

Data Points per Second
-
=3
(=)
I

=@ Intel KNL
NVIDIA P100
"""" Intel KNL Add
0.00 - | | | | |
322 x 80 642 x 80 1282 x 80 256> x 80 5122 x 80 10242 x 80
Domain Size

Figure 4: Grid point updates per second for the optimized
horizontal diffusion stencil on the Intel KNL and NVIDIA
P100 architectures for different domain sizes. As a reference,
the performance of a (blocked) addition of to fields on the
KNL is provided.

For the vertical advection stencil, the access pattern is a bit more
complex than for horizontal diffusion. The stencil consists of a
forward sweep followed by a backward sweep along the vertical

PASC ’19, June 12-14, 2019, Zurich, Switzerland

dimension, solving a tridiagonal linear system using the Thomas
algorithm [24]. Due to data dependencies, vectorization along the
vertical axis is not possible. Thus, the unit stride is again placed on
one of the horizontal axes. On the other hand, to allow for efficient
in-register storage of the intermediate coefficients appearing in
the Thomas algorithm, we want the innermost loop to be along
the vertical axis. Thus, we vectorize along one of the horizontal
directions but have an innermost loop along the vertical. As the
KNL’s hardware prefetcher only recognizes unit stride (in cache line
units) access patterns [11], software prefetching must be used to
get good bandwidth numbers. While this works well with relatively
small strides, we could not get any significant improvements from
software prefetching on larger strides. That is, we had to reduce
the strides along the vertical dimension and thus use a different
data layout than for the horizontal diffusion stencil for optimal
performance. The data was allocated such that 1 = s; < s <'s;.
Using this storage layout, for domain sizes of up to 128 X 128 X 80,
we get almost 60% performance improvements due to software
prefetching. On the 256 X 256 X 80 domain its impact already drops
slightly and for the even larger tested sizes it delivers only about
10% of performance improvement. The exact reason for the failure
of software prefetching on the large domains is unknown but we
expect some prefetcher limitations to be responsible.

Due to the very limited impact of software prefetching on the
large domain sizes, we could not reach competitive results with
the just presented strategy. There we achieved the best results by
swapping the two innermost loops to exploit hardware prefetching
along the contiguous (horizontal) axis while keeping the same data
layout. But as this requires memory buffers for the coefficients
used in the Thomas algorithms and thus puts more pressure on
the caches, the run times on small domains are higher compared
to the first strategy with working software prefetching (i.e., on
small domains) and are not fully competitive with the P100 on
any domain size. However, this change actually simplifies the user
implementation and does not require any fine tuning of software
prefetching distance as it solely relies on hardware prefetching.

Figure 5 shows the performance comparison between the strate-
gies chosen for small domains (also shown with disabled software
prefetching) and large domains, respectively. Shown is the median
of 100 runs.

The performance comparison to P100 is shown in Figure 6. For
KNL, the best strategy for the particular domain size is shown.
Note that KNL is faster than the P100 on domains up to a size of
128x128x80 grid points, where software prefetching is working
well. On larger domain sizes, we employ the alternative strategy
that does not require software prefetching but does not achieve
the same performance as the P100. 128 threads were used on the
smaller domains (up to 256x256x80), 64 threads were used on the
two largest domains.

A roofline plot for the two representative stencils is shown in Fig-
ure 7. Arithmetic intensity and required data transfer are manually
computed values, based on the minimally required data transfers
and floating point operations of the present implementations. While
our implementation of the horizontal diffusion stencil has a much
higher arithmetic intensity than a naive implementation due to the
redundant on-the-fly computations and the avoidance of temporary
buffers, it is not compute bound. In case of the vertical advection

Thaler, et al.

=}
Z 150 -
o
@
L 195 -
a
z 1.00 -
g
3
A~ 0.75 -
| 050 - —8— SW Prefetching
0.25 - Disabled SW Prefetching
—4&— Swapped Loops & HW Prefetching
0.00 = | | | | |

322 x 80 642 x 80 1282 x 80 2562 x 80 5122 x 80 10242 x 80
Domain Size

Figure 5: Grid point updates per second for the vertical ad-
vection stencils on the Intel KNL with and without software
prefetching as described in the text.

x10°
2.00 -
1.75 - .
]
3 1.50 -
o
%
2125 -
2
j_,f 1.00 -
g
A~ 075 -
2
& 050 -
0.25 - —@— Intel KNL
NVIDIA P100
0.00 - | | |

I I
322 x 80 642 x 80 1282 x 80 2562 x 80 5122 x 80 10242 x 80
Domain Size

Figure 6: Grid point updates per second for the optimized
vertical advection stencil on the Intel KNL and NVIDIA P100
architectures for different domain sizes.

stencil, the strategy changes and thus less optimal memory usage
for large domain sizes is clearly visible.

Simplified code listings to clarify the looping strategies for both
stencils are given in Appendix A.

2.3 Summary of Optimization Strategies

Here, we outline some general optimization strategies for the Intel
KNL architecture, that we found to be crucial during our work and
might be helpful for other optimization efforts.

Due to the high core count, setting the thread affinity correctly is
very important. Further, the number of threads is a simple-to-tune
parameter. We found 128 threads to perform reasonably well in most
cases, sometimes 64 threads performed better. Using MCDRAM
significantly improves performance on bandwidth-bound problems
without any code changes.

Vectorization is crucial for reasonable performance. To reach
high memory bandwidth, hardware prefetching should be exploited
wherever possible. Otherwise, software prefetching might or might

Porting the COSMO Weather Model to Manycore CPUs

Vector FMA Peak FLOPS s
Vector Add Peak FLOPS el
1012 = 2 -
: - Scalar Add_Peak FLOPS =" i
£ 1om - S - l
Q é\‘lsz” r”
2 add R
\2ad -
3 Yo T
> - + 4
100 < OB \\:\55\«\’ &7 %
s S
CQ\})”
ﬁ?/” —®— Horizontal Diffusion
109 = o Vertical Advection

B : Vg oy Ry
1072 107! 10° 10!
Arithmetic Intensity [FLOP / B]

Figure 7: Roofline plot for the same domain sizes used in
the previous plots. The larger the domain size, the closer the
results come to the peak MCDRAM bandwidth (see annota-
tions to find the smallest domain size).

not help. To reach peak bandwidth, non-temporal stores have to be
employed, though using them correctly in a large code base might
be non-trivial. Wrong usage can lead to large performance losses.
Currently, no major compiler seems to apply them without user
intervention.

If possible, using more compute resources instead of memory
resources is often beneficial. Not only to reduce memory transfers,
but also to reduce pressure on the sometimes limiting caching
subsystem. For multidimensional arrays, padding the contiguous
dimension to cache line size might improve performance. Further,
using huge pages may reduce the pressure on the TLB. Power-of-
two strides can lead to increased L1 and L2 cache conflicts or TLB
conflicts and thus impact performance. Reducing the number of L1
set conflicts by slightly shifting allocated data as proposed in the
Intel 64 and IA-32 Architectures Optimization Reference Manual
[11] is recommended if multiple fields are accessed in the same
loop.

3 GRIDTOOLS BACK-END
IMPLEMENTATION

3.1 Methodology

Next we developed a back-end for the GridTools C++ EDSL frame-
work, that implements the most efficient optimization strategies
for KNL obtained in the hand-tuned codes. OpenMP was chosen
for thread-level parallelism.

The new back-end is expected to deliver much improved perfor-
mance as compared to the previously available CPU back-end not
only on the Intel KNL platform but also on any similar architecture
with wide vector registers, many cores and/or High Bandwidth
Memory that support standard OpenMP code, for example the Intel
Skylake and newer architectures. The reason is that the previous
CPU back-end was optimized for legacy CPUs with small vector
width and fewer cores. Its design does not allow vectorization on
the vertical stencil codes in the COSMO dycore. Due to the usage
of (pragma guided) auto-vectorization inside the back-end, compi-
lation of the GridTools code on any platform with good C++ and

PASC ’19, June 12-14, 2019, Zurich, Switzerland

OpenMP support should be possible, thus also non-Intel architec-
tures are supported.

The parallel kernel skeletons and performance-relevant opti-
mizations of the new KNL back-end of GridTools are based on the
experiments with the hand-optimized representative stencils. Re-
sults are evaluated on the full COSMO dynamical core implemented
using GridTools, which will replace the operational STELLA version
(see Section 1.3), and will be discussed in Section 3.2.

In order to cover a representative configuration of components
of the whole COSMO model, a physical parameterization, namely
the Ritter and Geleyn radiation scheme [19] was ported to and
optimized for KNL architecture. The current operational code is
parallelized for CPU using only MPI parallelization, which is not
compatible with the Dycore’s OpenMP parallelization. In order to
evaluate an efficient implementation of the physical parameteri-
zation on KNL, the radiation scheme was ported to OpenMP. Per-
formance results and comparisons with the existing GPU-enabled
operational code (that uses OpenACC) are shown in Section 3.4.

3.2 GridTools Back-End Design

According to the results described in section 2.2, we designed the
GridTools back-end for KNL. As the optimal performance for hori-
zontal and vertical stencil patterns is obtained using different stor-
age layouts on the KNL (horizontal: 1 = s; < sj < sg; vertical:
1=s; < g < sj) due to different access patterns, we had to choose
a compromise for the GridTools back-end. About half of the stencils
in the COSMO dycore follow the horizontal pattern and half the
vertical, so layout transformations are no option in this case. Due
to the smaller performances loss of the vertically-optimal layout
on the horizontal stencils than vice versa, the best layout for the
vertical stencils has been chosen as the default in the GridTools
back-end. On horizontal stencils this gives a loss of 15% - 25% in
performance compared to the ideal layout, depending on the sten-
cil. For data allocation, the same strategy as in the benchmarks is
applied, 2 MB huge pages are allocated, the unit stride dimension
is padded to cache line size and the data pointers get shifted such
that L1 set conflicts are reduced.

GridTools’ general design is based on element-wise operations.
This allows to easily use all normal language constructs like if-
statements and loops inside the stencil functions, which leads to
well-readable code. On the other hand, it forbids to expose SIMD
vector intrinsics (or wrappers around them) to the user. Thus, all
vectorization relies on the compiler’s auto-vectorization, guided
by OpenMP pragmas. Enabling auto-vectorization in the complex
C++ template based code of GridTools proved to be much harder
than on the simpler code developed for the benchmarking presented
before. Several compiler-specific workarounds in existing GridTools
code had to be implemented inside the back-end code to allow for
vectorization even of simple stencils and to work around compiler
bugs. Nevertheless, with those changes, the Intel compiler is able
to vectorize the majority of the tested stencils.

Data for intermediate temporary data fields is stored in per-
thread private buffers. For temporary fields in purely horizontal
stencils, the user can activate more efficient caching of 2D data
planes, similar to the available GPU strategy.

PASC ’19, June 12-14, 2019, Zurich, Switzerland

Developing a fully automatic software prefetching strategy using
GridTools is not possible in general. Depending on the exact stencil
pattern, prefetching distance, the location of the prefetching instruc-
tions as well as the selection of which data even has to be prefetched
might change heavily and is difficult to determine automatically.
Despite the performance implications on small domain sizes, we
decided to abandon this strategy in favor of implementing the best
pattern found for large domain sizes, where software prefetching
does not give a significant performance improvement. Those deci-
sions give a run time penalty of estimated of up to 30% — 40% on
vertical stencils on smaller domains compared to the hand-tuned
code.

A further limitation is the lack of non-temporal stores in the
GridTools back-end. Currently the only possibility to enable non-
temporal stores on x86 hardware in a compiler-independent way is
to use SIMD intrinsics, but the GridTools framework does not sup-
port the use of intrinsics since it fully relies on auto-vectorization.
The Intel C++ Compiler provides two additional possibilities: using
compiler pragmas or globally enabling them by a compilation flag.
However, the latter is rarely useful as it also makes desired cache
reuse difficult, while the former requires a pragma not where the
data is really accessed, but outside the loop around the data access.
However, we do not expect a large performance degradation in
real-world applications due to missing non-temporal store instruc-
tions as often the output of one stencil is the input of the following
stencil and thus caching is desired.

The last difference to the benchmark implementations is the
selection of the per-thread block size: while we auto-tuned the rep-
resentative stencil implementations for optimal domain-dependent
block sizes, GridTools relies on a simple heuristic that tries to exploit
hardware prefetching along the contiguous data dimension, which
proved to be essential on the benchmark stencils, while respecting
the (user-defined) number of threads.

3.3 Dycore Stencils Performance Results

While the benchmark results on the representative stencils pre-
sented in Section 2.2 look very promising, the compromise in the
storage layout selection, reliance on auto-vectorization and sub-
optimal implementation of vertical stencils as illustrated in the
previous section, are clear points that limit the practical perfor-
mance in the full COSMO dycore implementation. In addition to
the GridTools-specific performance penalties, the dycore code itself
was tuned to deliver close to optimal performance on GPUs. First, in-
termediate results of horizontal stencils are often cached in shared
memory on the GPU, this caching is user-defined in GridTools
code and will also be translated to “caching” in memory buffers on
the KNL. But the experiments on the representative stencils have
clearly shown that in most cases avoiding any unnecessary memory
accesses is beneficial on the KNL. Thus, if intermediate results are
accessed multiple times, it is often faster to compute those multiple
times redundantly instead of caching them in buffers. With this
caching strategy we experienced a performance loss of 30% — 100%
compared to the redundant on-the-fly computations. Second, some
stencils are optimized to benefit from the register-caching available
in the GPU back-end along the vertical axis, even if there are no
vertical dependencies. This strategy of course might only work on

Thaler, et al.

the GPUs as the KNL is lacking those caches. Third, several stencils
contain code that is not auto-vectorized by the compiler, but after
the applied code changes only a small number without major run
time contribution is affected. For those reasons, a considerable slow
down on the KNL compared to the P100 has to be accepted without
introducing major code changes inside the GridTools dycore.

0.14 -

0.12 -

0.10 -

0.08 -

0.06 -

Execution Time [s]

0.04 -

0.02 -

P100 KNL K80 Skylake
Architecture

Figure 8: GridTools COSMO dycore stencil execution times
of one time step on different hardware platforms. The col-
ors mark different stencils. Architectures are sorted by peak
memory bandwidth. Domain size is 129x129x80 grid points
using double precision floating point numbers.

Figure 8 shows the total stencil run times on four different hard-
ware platforms, namely the NVIDIA Tesla P100 and Tesla K80 and
the Intel KNL and Intel Skylake architecture (see Section 1.5 for
more detailed specifications and exact models of the Intel proces-
sors). The shown numbers are for a benchmark setup with a domain
size of 129x129x80 grid points using double precision arithmetic,
run with 128 threads. Relative numbers for other domain sizes and
single precision are comparable. The total stencil execution times
of the COSMO dycore on the KNL architecture is approximately a
factor two of the run times on the P100 for the benchmark setup.
Still, KNL is considerably faster than the NVIDIA K80 and Intel
Skylake architectures, due to higher available memory bandwidth.

To see the per-stencil performance loss compared to the P100,
Figure 9 shows a histogram including all stencils and relative run
times compared to the P100. The median is 175%. 34 out of the 40
stencils executed in this benchmark lie within a factor 2.4 of the
P100. The performance penalty for those stencils is mostly related
to the non-optimal data layout (horizontal stencils only), missing
register caching and software prefetching (vertical only) and usage
of in-memory caching instead of on-the-fly computations. The very
few stencils with an even larger slow down normally suffer from
issues with auto-vectorization, other compiler limitations or GPU-
specific optimizations that are counterproductive for KNL perfor-
mance. Still, the newly implemented back-end is more than 10 times
faster than the old CPU back-end already available in GridTools,
when considering the total stencil run time of the COSMO dycore
on the KNL. We expect similar results on comparable hardware, for
example on the Intel Skylake or newer architectures (though to a
lesser extent there due to missing high-bandwidth memory).

Porting the COSMO Weather Model to Manycore CPUs

= —
1S)
| |

®
|

Number of Stencils

100% 150% 200% 250% 300% 350% 400%
Execution Time Relative to P100

Figure 9: Histogram of dycore stencil execution times run
on KNL vs. P100. Most stencils are placed between 100% and
200%, i.e., one to two times slower on the KNL.

Experiments have shown that, despite the considerable perfor-
mance degradation compared to the P100, the performance is on
par with the original COSMO dycore Fortran code for vertical sten-
cils and an order of magnitude faster for horizontal stencils on
the KNL for the given benchmark data. Due to lacking OpenMP
parallelism in the original COSMO code, the Fortran dycore was
executed using pure MPL This leads to large communication costs
for the horizontal stencils.

3.4 Physical Parameterization Performance
Results

In order to have a comprehensive set of components for the COSMO
performance evaluation on KNL, a relevant and computationally
expensive parameterization, i.e. the radiative transfer, was ported to
OpenMP, starting from the existing MPI + OpenACC implementa-
tion. The optimized code was compiled with Intel Fortran compiler
18.0. In contrast to the experience with auto-vectorization on the
GridTools kernels of the dynamical core, the compiler could auto-
vectorize all the parallel Fortran loops without reorganizations of
the user code. This is due to two reasons: a much easier data depen-
dencies pattern of the physical parameterizations (column based) as
compared to the dynamical core stencil computations and the fact
that Fortran implementations are easier to analyze and optimize
than the heavy-templated C++ code used in the GridTools imple-
mentation. In order to maximize the performance of the OpenMP
port used on KNL the OpenMP runtime parameters like thread
affinity were tuned.

Figure 10 shows the performance comparison (median of 10 runs)
of the OpenMP version measured for KNL and Skylake and the
OpenACC version measured for K80 and P100 (compiled with Cray
compiler v8.7.3). The figure shows that when using small domain
sizes, CPU architectures outperform GPU architectures. Reason for
this is that KNL and Skylake benefit from large caches, while GPU
architectures suffer from a lack of parallelism. For large domains
this is not true. As shown, P100 provides the best performance for
large domains that provide a reasonable level of parallelism.

PASC ’19, June 12-14, 2019, Zurich, Switzerland

10 - N P100
KNL
K80
0.8 - HEE Skylake
0.6 -

04 -

N L I

. By

64 x 64 x 60 128 x 128 x 60 256 x 256 x 60
Domain Size

Execution Time [s]

Figure 10: Measured run times of the radiation code on
different hardware. Architectures are sorted by peak band-
width.

To compare the existing MPI-based implementation to the newly
ported OpenMP, we tried different configurations of combined MPI
+ OpenMP parallelization. For this (communication-free) code, both
approaches show very similar performance results if affinity is
properly configured.

4 DISCUSSION
4.1 Achievements

We have shown performance results on hand-optimized stencil
codes representative for weather and climate simulation codes on
the Intel Xeon Phi KNL many core processor that are on par with
the NVIDIA Tesla P100 GPU, both released in the same year. Our
investigations show that the KNL architecture allows for good
performance results, but reaching execution times on par with
GPUs requires a detailed knowledge of the hardware and highly
architecture-specific code optimization.

By implementing a back-end for the GridTools C++ EDSL op-
timized for the KNL, we could run the full COSMO dycore on
KNL while requiring only small changes to the user code (ideally
none, see next section). While we could observe a performance
gap between the KNL and the P100 in the full dycore, mainly
due to technical limitations and design limitations of the template-
metaprogramming approach used by GridTools, this shows that
reasonable performance (on par with the previously available For-
tran implementation) on multiple architectures with the same user
DSL code is possible. Porting the GridTools dycore to a new hard-
ware architecture required, apart from workarounds for compiler
issues, zero effort on the user code.

4.2 Limitations

The code complexity of the GridTools back-end design seems to
overburden the current C++ compilers. A total redesign of the
internals of the existing GridTools CPU back-end was necessary
and compiler-specific workarounds had to be placed throughout
the code to even enable auto-vectorization in most common cases.
Guaranteeing successful auto-vectorization of even relatively sim-
ple user-code is still impossible. Several compiler bugs were found

PASC ’19, June 12-14, 2019, Zurich, Switzerland

and reported during the back-end development, but not all could
be reproduced in simplified code. Five stencils of the dycore ini-
tially showed disastrous performance — one was more than 800
times slower than the GPU version — due to compiler issues. Those
stencils required manual interventions in the user (dycore) code.
Attempts to fix them inside the library code failed. The issues were
triggered seemingly randomly. One observed trigger was for exam-
ple a too deeply nested GridTools stencil function? call, which could
be fixed by manually “inlining” the callee code (i.e., copying and
pasting code). But detecting the reason for such problems is very
difficult for the average user and good knowledge of the GridTools
library and used compilers is often necessary for solving them.

While GridTools allows to run the same user code on multiple
hardware platforms, the EDSL is not fully declarative. The user is
still responsible for choosing the most effective implementation of
a stencil on a specific architecture. This limits the practical perfor-
mance portability of user code. Though, the achieved portability
is still much better than for classical, fully platform-specific hand-
optimized code and allows at least a certain degree of performance
on multiple, totally different hardware architectures. A fully declar-
ative stencil-DSL could possibly overcome these limits in the future,
but fully automatic hardware-dependent optimization techniques
specific to stencil codes would be required and are — according to
our best knowledge — not available today.

ACKNOWLEDGMENTS

This project was partially funded by the PASC initiative (www.pasc-
ch.org) in form of the PASCHA project (Portability and Scalability
of COSMO on Heterogeneous Architectures) and the Intel Parallel
Computing Center (IPCC) program (PI: T. Hoefler). We would like
to thank John Pennycook from Intel for his visit, valuable feedback
on optimization strategies and support on compiler issues as well
as Jason Sewell (also from Intel) for further input.

REFERENCES

[1] Samantha V. Adams, Rupert W. Ford, M. Hambley,]J. M. Hobson, I. Kavcic, C. M.

Maynard, T. Melvin, Eike Hermann Miiller, S. Mullerworth, A. R. Porter, Mike

Rezny, Ben Shipway, and R. Wong. 2018. LFRic: Meeting the challenges of

scalability and performance portability in Weather and Climate models. CoRR

abs/1809.07267 (2018). arXiv:1809.07267 http://arxiv.org/abs/1809.07267

Valentin Clement, Sylvaine Ferrachat, Oliver Fuhrer, Xavier Lapillonne, Carlos E.

Osuna, Robert Pincus, Jon Rood, and William Sawyer. 2018. The CLAW DSL: Ab-

stractions for Performance Portable Weather and Climate Models. In Proceedings

of the Platform for Advanced Scientific Computing Conference (PASC ’18). ACM,

New York, NY, USA, Article 2, 10 pages. https://doi.org/10.1145/3218176.3218226

[3] COSMO. 1998. Consortium for Small-scale Modeling. http://www.cosmo-model.
org/

[4] G Doms and M Baldauf. 2018. A Description of the Nonhydrostatic Regional
COSMO-Model. http://www.cosmo-model.org/content/model/documentation/
core/default.htm

[5] H. Carter Edwards, Daniel Sunderland, Vicki Porter, Chris Amsler, and Sam Mish.
2012. Manycore performance-portability: Kokkos multidimensional array library.
Scientific Programming 20 (2012), 89-114.

[6] Oliver Fuhrer, Tarun Chadha, Torsten Hoefler, Grzegorz Kwasniewski, Xavier
Lapillonne, David Leutwyler, Daniel Liithi, Carlos Osuna, Christoph Schér,
Thomas C. Schulthess, and Hannes Vogt. 2018. Near-global climate simula-
tion at 1 km resolution: establishing a performance baseline on 4888 GPUs
with COSMO 5.0. Geoscientific Model Development 11, 4 (May 2018), 1665-1681.
https://doi.org/10.5194/gmd-11-1665-2018

&,

ZStencil operators in GridTools can be called similar to normal functions from inside
other stencil operators. Information about the current iteration point and neighborhood
of the caller get passed on to the callee.

Thaler, et al.

[7] Oliver Fuhrer, Carlos Osuna, Xavier Lapillonne, Tobias Gysi, Ben Cumming,
Mauro Bianco, Andrea Arteaga, and Thomas Christoph Schulthess. 2014. To-
wards a performance portable, architecture agnostic implementation strategy for
weather and climate models. Supercomputing Frontiers and Innovations 1, 1 (June
2014), 45-62-62. https://doi.org/10.14529/jsfi140103

Mark Govett, Jim Rosinski, Jacques Middlecoff, Tom Henderson, Jin Lee, Alexan-

der MacDonald, Ning Wang, Paul Madden, Julie Schramm, and Antonio Duarte.

2017. Parallelization and Performance of the NIM Weather Model on CPU,

GPU, and MIC Processors. Bulletin of the American Meteorological Soci-

ety 98, 10 (2017), 2201-2213. https://doi.org/10.1175/BAMS-D-15-00278.1

arXiv:https://doi.org/10.1175/BAMS-D-15-00278.1

Tobias Grosser and Torsten Hoefler. 2016. Polly-ACC Transparent Compilation

to Heterogeneous Hardware. In Proceedings of the 2016 International Conference

on Supercomputing (ICS ’16). ACM, New York, NY, USA, Article 1, 13 pages.
https://doi.org/10.1145/2925426.2926286

Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas C.

Schulthess. 2015. STELLA: A Domain-specific Tool for Structured Grid Methods

in Weather and Climate Models. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis (SC ’15). ACM,

New York, NY, USA, 41:1-41:12. https://doi.org/10.1145/2807591.2807627

Intel Corporation. 2016. Intel® 64 and IA-32 Architectures Optimization

Reference Manual. https://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-optimization-manual.pdf

Intel Corporation. 2017. Intel® Xeon Phi™ Coprocessor x200 Product Fam-

ily Datasheet. https://www.intel.com.br/content/dam/www/public/us/en/

documents/datasheets/xeon-phi-coprocessor-x200-family-datasheet.pdf

Intel Corporation. 2018. Product Change Notification 116378 - 00. https:

//qdms.intel.com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/

PCN116378-00.pdf

Jim Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor

High Performance Programming (Knights Landing Edition). Morgan Kaufmann,

Boston. https://doi.org/10.1016/B978-0-12-809194-4.09988-9

John Michalakes, Michael J. Iacono, and Elizabeth R. Jessup. 2016. Optimizing

Weather Model Radiative Transfer Physics for Intel’s Many Integrated Core (MIC)

Architecture. Parallel Processing Letters 26 (2016), 1-16.

[16] J. Mielikainen, B. Huang, and A. H.-L. Huang. 2014. Intel Xeon Phi acceler-
ated Weather Research and Forecasting (WRF) Goddard microphysics scheme.
Geoscientific Model Development Discussions 7, 6 (Dec. 2014), 8941-8973. https:
//doi.org/10.5194/gmdd-7-8941-2014

[17] T. A.]. Ouermi, Aaron Knoll, Robert Michael Kirby, and Martin Berzins. 2017.
OpenMP 4 Fortran Modernization of WSM6 for KNL. In PEARC.

[18] Sabela Ramos and Torsten Hoefler. 2017. Capability Models for Manycore Memory

Systems: A Case-Study with Xeon Phi KNL. In 2017 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, Orlando, FL, USA, 297-306.

https://doi.org/10.1109/IPDPS.2017.30

Bodo Ritter and Jean-Francois Geleyn. 1992. A Comprehensive Radiation Scheme

for Numerical Weather Prediction Models with Potential Applications in Climate

Simulations. Monthly Weather Review 120, 2 (Feb. 1992), 303-325. https://doi.

org/10.1175/1520-0493(1992)120< 0303: ACRSFN>2.0.CO;2

T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler, and C. Schir. 2019.

Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based

on Weather and Climate Simulations. Computing in Science Engineering 21, 1

(Jan. 2019), 30-41. https://doi.org/10.1109/MCSE.2018.2888788

Pascal Sporri. 2017. COSMO C++ Dynamical Core Training Course - Introduction

and Code Flow. https://wiki.c2sm.ethz.ch/pub/COSMO/CXXDynamicalCore/

20170403 _-_1 - CPP_Dycore_Intro_Code_Flow.pdf

Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. 2018. TOP500

List — November 2018. https://www.top500.org/lists/2018/11/

Lukasz Szustak, Krzysztof Rojek, and Pawel Gepner. 2014. Using Intel Xeon

Phi Coprocessor to Accelerate Computations in MPDATA Algorithm. In Parallel

Processing and Applied Mathematics (Lecture Notes in Computer Science), Roman

Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski (Eds.).

Springer Berlin Heidelberg, 582-592.

Llewellyn H. Thomas. 1949. Elliptic Problems in Linear Differential Equations over

a Network. Watson Science Computer Laboratory Report. Columbia University,

New York, NY, USA.

Louis J. Wicker and William C. Skamarock. 2002. Time-Splitting Methods for

Elastic Models Using Forward Time Schemes. Monthly Weather Review 130,

8 (Aug. 2002), 2088-2097. https://doi.org/10.1175/1520-0493(2002)130< 2088:

TSMFEM>2.0.CO;2

—
&

—
L

[10

[11

[12

=
&

[14

[15

[19

[20

[21

[22

[23

[24

[25

http://arxiv.org/abs/1809.07267
http://arxiv.org/abs/1809.07267
https://doi.org/10.1145/3218176.3218226
http://www.cosmo-model.org/
http://www.cosmo-model.org/
http://www.cosmo-model.org/content/model/documentation/core/default.htm
http://www.cosmo-model.org/content/model/documentation/core/default.htm
https://doi.org/10.5194/gmd-11-1665-2018
https://doi.org/10.14529/jsfi140103
https://doi.org/10.1175/BAMS-D-15-00278.1
http://arxiv.org/abs/https://doi.org/10.1175/BAMS-D-15-00278.1
https://doi.org/10.1145/2925426.2926286
https://doi.org/10.1145/2807591.2807627
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com.br/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-x200-family-datasheet.pdf
https://www.intel.com.br/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-x200-family-datasheet.pdf
https://qdms.intel.com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/PCN116378-00.pdf
https://qdms.intel.com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/PCN116378-00.pdf
https://qdms.intel.com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/PCN116378-00.pdf
https://doi.org/10.1016/B978-0-12-809194-4.09988-9
https://doi.org/10.5194/gmdd-7-8941-2014
https://doi.org/10.5194/gmdd-7-8941-2014
https://doi.org/10.1109/IPDPS.2017.30
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
https://doi.org/10.1109/MCSE.2018.2888788
https://wiki.c2sm.ethz.ch/pub/COSMO/CXXDynamicalCore/20170403_-_1_-_CPP_Dycore_Intro_Code_Flow.pdf
https://wiki.c2sm.ethz.ch/pub/COSMO/CXXDynamicalCore/20170403_-_1_-_CPP_Dycore_Intro_Code_Flow.pdf
https://www.top500.org/lists/2018/11/
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2

Porting the COSMO Weather Model to Manycore CPUs

A REPRESENTATIVE STENCIL CODES

Listing 1: Simplified horizontal diffusion stencil implemen-
tation.

// loop over blocks
#pragma omp for collapse (3)
for (int k = 0; k < ksize; ++k) {
for (int jb = 0; j < jsize; jb += jbsize) {
for (int ib = 0; ib < isize; ib += ibsize) {

// loop inside block
for (int j = jb; j < jb + jbsize; ++j) {
// wvectorization (contiguous axis)
// exploiting hardware prefetching
#pragma omp simd
#pragma vector nontemporal
for (int i = ib; i < ib + ibsize; ++i) {
// stencil computation

}

}

Listing 2: Simplified vertical advection stencil implementa-
tion. Version for small domains.

// loop over blocks
#pragma omp for collapse (2)
for (int jb = 0; j < jsize; jb += jbsize) {
for (int ib = 0; ib < isize; ib += ibsize) {

// loop inside block
for (int j = jb; j < jb + jbsize; ++j) {

// vectorization (contiguous axis)
#pragma omp simd
for (int i = ib; i < ib + ibsize; ++i) {
for (int k = 0; k < ksize; ++k) {
// software prefetching to L2 cache

PASC ’19, June 12-14, 2019, Zurich, Switzerland

// forward loop operations

}

for (int k = ksize — 1; k >= 0; —k) {
// backward loop operations

}

}

Listing 3: Simplified vertical advection stencil implementa-
tion. Version for large domains.

// loop over blocks
#pragma omp for collapse (2)
for (int jb = 0; j < jsize; jb += jbsize) {
for (int ib = 0; ib < isize; ib += ibsize) {

// loop inside block
for (int j = jb; j < jb + jbsize; ++j) {
for (int k = 0; k < ksize; ++k) {
// wvectorization (contiguous axis)
// exploiting hardware prefetching
#pragma omp simd
for (int i = ib; i < ib + ibsize; ++i) {
// forward loop operations

}

for (int k = ksize — 1; k >= 0; —k) {
// wvectorization (contiguous axis)
// exploiting hardware prefetching
#pragma omp simd
for (int i = ib; i < ib + ibsize; ++i) {
// backward loop operations

}

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 GridTools
	1.3 The COSMO Weather Model
	1.4 Intel Xeon Phi ``Knights Landing''
	1.5 Experimental Setup

	2 Performance Evaluation on Representative Stencils
	2.1 Methodology
	2.2 Results
	2.3 Summary of Optimization Strategies

	3 GridTools Back-End Implementation
	3.1 Methodology
	3.2 GridTools Back-End Design
	3.3 Dycore Stencils Performance Results
	3.4 Physical Parameterization Performance Results

	4 Discussion
	4.1 Achievements
	4.2 Limitations

	Acknowledgments
	References
	A Representative Stencil Codes

