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Abstract—The interconnect is one of the most critical compo-
nents in large scale computing systems, and its impact on the per-
formance of applications is going to increase with the system size.
In this paper, we will describe SLINGSHOT, an interconnection
network for large scale computing systems. SLINGSHOT is based
on high-radix switches, which allow building exascale and hyper-
scale datacenters networks with at most three switch-to-switch
hops. Moreover, SLINGSHOT provides efficient adaptive routing
and congestion control algorithms, and highly tunable traffic
classes. SLINGSHOT uses an optimized Ethernet protocol, which
allows it to be interoperable with standard Ethernet devices while
providing high performance to HPC applications. We analyze the
extent to which SLINGSHOT provides these features, evaluating
it on microbenchmarks and on several applications from the
datacenter and AI worlds, as well as on HPC applications. We
find that applications running on SLINGSHOT are less affected
by congestion compared to previous generation networks.

Index Terms—interconnection network, dragonfly, exascale,
datacenters, congestion

I. INTRODUCTION

The first US exascale supercomputer will be built within two
years, marking an important milestone for computing systems.
Exascale computing has been a long-awaited goal, which
required significant contributions both from academic and
industrial research. One of the most critical components having
a direct impact on the performance of such large systems is the
interconnection network (interconnect). Indeed, by analyzing
the performance of the Top500 supercomputers [1] when
executing HPL [2] and HPCG [3], two benchmarks commonly
used to assess supercomputing systems, we can observe that
HPCG is typically characterized by ∼50x lower performance
compared to HPL. Part of this performance drop is caused by
the higher communication intensity of HPCG, clearly show-
ing that, among others, an efficient interconnection network
can help in exploiting the full computational power of the
system. The impact of the interconnect on the performance of
supercomputing systems increases with the scale of the system,
highlighting the need for novel and efficient solutions.

Both the HPC and datacenter communities are following a
path towards convergence of HPC, data centers, and AI/ML
workloads, which poses new challenges and requires new so-
lutions. Workloads are becoming much more data-centric, and
large amounts of data need to be exchanged with the outside

world. Due to the wide adoption of Ethernet in datacenters,
interconnection networks should be compatible with standard
Ethernet, so that they can be efficiently integrated with stan-
dard devices and storage systems. Moreover, many data center
workloads are latency-sensitive. For such applications, tail
latency is much more relevant than the best case or average
latency. For example, web search nodes must provide 99th

percentile latencies of a few milliseconds [4]. This is also
a relevant problem for HPC applications, whose performance
may strongly depend on messages latency, especially when us-
ing many global or small messages synchronizations. Despite
the efforts in improving the performance of interconnection
networks, tail latency still severely affect large HPC and data
center systems [4]–[7].

To address these issues, Cray1 recently designed the SLING-
SHOT interconnection network. SLINGSHOT will power all
three announced US exascale systems [8]–[10] and numerous
supercomputers that will be deployed soon. It provides some
key features, like adaptive routing and congestion control, that
make it a good solution for HPC systems but also for cloud
data centers. SLINGSHOT switches have 64 ports with 200
Gb/s each and support arbitrary network topologies. To reduce
tail latencies, SLINGSHOT offers advanced adaptive routing,
congestion control, and quality of service (QoS) features.
Those also protect applications from interference, sometimes
referred to as network noise [5], [11], caused by other ap-
plications sharing the interconnect. Lastly, SLINGSHOT brings
HPC features to Ethernet, such as low latency, low packet
overhead, and optimized congestion control, while maintaining
industry standards. In SLINGSHOT, each port of the switch
can negotiate the available Ethernet features with the attached
devices, and can communicate with existing Ethernet devices
using standard Ethernet protocols, or with other SLINGSHOT
switches and NICs by using SLINGSHOT specific additions.
This allows the network to be fully interoperable with existing
Ethernet equipment while at the same time providing good
performance for HPC systems.

In this study, we experimentally analyze SLINGSHOT’s
performance features to guide researchers, developers, and

1Cray is a Hewlett Packard Enterprise (HPE) company since 2019.
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system administrators. We use Mellanox ConnectX-5 100 Gb/s
Ethernet NICs to test the ability of SLINGSHOT to deal with
standard RDMA over Converged Ethernet (RoCE) traffic2.
Moreover, by doing so we can analyze the impact of the switch
on the end-to-end performance by factoring out some of the
improvements on the Ethernet protocol introduced by SLING-
SHOT. We first analyze the latencies of a quiet system. Then,
we analyze the impact of congestion on both microbenchmarks
and real applications for different configurations, showing that
SLINGSHOT is only marginally affected by network noise. To
further show the benefits of the congestion control algorithm,
we compare SLINGSHOT to Cray’s previous ARIES network,
which has a similar topology and uses a similar routing
algorithm.

II. SLINGSHOT ARCHITECTURE

We now describe the SLINGSHOT interconnection network.
We first introduce the ROSETTA switch and show how switches
can be connected to form a Dragonfly [12] topology. We then
dive into specific features of SLINGSHOT such as adaptive
routing, congestion control, and quality of service manage-
ment. Lastly, we describe the main characteristics of the
SLINGSHOT additions to Ethernet and the software stack.

A. Switch Technology (ROSETTA)

The core of the SLINGSHOT interconnect is the ROSETTA
switch, providing 64 ports at 200 Gb/s per direction. Each port
uses four lanes of 56 Gb/s Serializer/Deserializer (SerDes)
blocks using Pulse-Amplitude Modulation (PAM-4) modu-
lation. Due to Forward Error Correction (FEC) overhead,
50Gb/s can be pushed through each lane. The ROSETTA ASIC
consumes up to 250 Watts and is implemented on TSMCs 16
nm process. ROSETTA is composed by 32 peripheral function
blocks and 32 tile blocks. The peripheral blocks implement
the SerDes, Medium Access Control (MAC), Physical Coding
Sublayer (PCS), Link Layer Reliability (LLR), and Ethernet
lookup functions.

The 32 tile blocks implement the crossbar switching be-
tween the 64 ports, but also adaptive routing and congestion
management functionalities. The tiles are arranged in four
rows of eight tiles, with two switch ports handled per tile, as
shown in Figure 1. The tiles on the same row are connected
through 16 per-row buses, whereas the tiles on the same
column are connected through dedicated channels with per-
tile crossbars. Each row bus is used to send data from the
corresponding port to the other 16 ports on the row. The per-
tile crossbar has 16 inputs (i.e., from the 16 ports on the row)
and 8 outputs (i.e., to the 8 ports on the column). For each port,
a multiplexer is used to select one of the four inputs (this is not
explicitly shown in the figure for the sake of clarity). Packets
are routed to the destination tile through two hops maximum.
Figure 1 shows an example: if a packet is received on Port 19
and must be routed to Port 56, the packet is first routed on the
row bus, then it goes through the 16-to-8 crossbar highlighted

2200 Gb/s Ethernet NICs were not available at the time of writing

in the picture, and then down a column channel to Port 56.
Thanks to the hierarchical structure of the tiles, there is no
need for a 64 ports arbiter, and the packets only incur in a 16
to 8 arbitration.
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Fig. 1: ROSETTA switch tiled structure.

The 32 tiles in ROSETTA implement a crossbar between the
64 ports. For performance and implementation reasons, the
crossbar is physically composed by different function-specific
crossbars, each handling a different aspect of the switching
traffic:

• Requests to Transmit To avoid head-of-line blocking
(HOL) [13], ROSETTA relies on a virtual output-queued
architecture [14], [15] where the routing path is deter-
mined before sending the data. The data is buffered
in the input buffers until the resources are available,
guaranteeing no further blocks. Before forwarding the
data, a request-to-transmit is sent to the tile corresponding
to the switch output port. When a grant to transmit is
received from the output port, the data is forwarded.

• Grants to Transmit Grants to transmit are sent by the
tile handling the output port to the tile from which the
switch received the packet. In the previous example, the
grants would be transmitted from the tile handling Port
56, to the tile handling Port 19. Grants are used to notify
the permission to forward the data to the next hop. The
use of requests and grants to transmit is a central piece
of the QoS management.

• Data Data is sent on a wider crossbar (48B). To speed up
the processing, ROSETTA parses and processes the packet
header as soon as it arrives, even if the data might still
be arriving.

• Request Queue Credits Credits provide an estimation of
queue occupancy. This information is then used by the
adaptive routing algorithm (see Section II-C) to estimate
the congestion of different paths and to select the least
congested one.

• End-to-End Acks End-to-End acknowledgments are
used to track the outstanding packets between every pair
of network endpoints. This information is used by the
congestion control protocol (see Section II-D).

By using physically separated crossbars, SLINGSHOT guar-
antees that different types of messages do not interfere with
each other and that, for example, large data transfers do not
slow down requests and grants to transmit.
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Fig. 2: Distribution of switch latency for RoCE traffic.

To analyze the impact of the switch architecture on the
latency, we report in Figure 2 the latency of the switch
when dealing with RoCE traffic. It is worth remarking that,
because we are using standard RoCE NICs, the NIC sends
plain Ethernet frames, and we cannot exploit all the features
of SLINGSHOT’s specialized Ethernet protocol (Section II-F).
Some of the features like link-level reliability and propagation
of congestion information are however still used in the switch-
to-switch communications. To compute the latency of the
switch, we consider the latency difference between 2-hops
and 1-hop latencies (we provide details on the topology in
Section II-B). We observe that ROSETTA has a mean and
median latency of 350 nanoseconds, with all the distribution
lying between 300 and 400 nanoseconds, except for a few
outliers.

B. Topology

ROSETTA switches can be arranged into any arbitrary topol-
ogy. Dragonfly [12] is the default topology for SLINGSHOT-
based systems, and it is the topology we refer to in the
rest of the paper. Dragonfly is a hierarchical direct topology,
where all the switches are connected to both computing nodes
and other switches. Sets of switches are connected between
each other forming so-called groups. The switches inside
each group may be connected by using an arbitrary topology,
and groups are connected in a fully connected graph. In the
SLINGSHOT implementation of Dragonfly (shown in Figure 3),
each ROSETTA switch is connected to 16 endpoints through
copper cables (up to 2.6 meters), using the remaining 48 ports
for inter-switches connectivity. The partitioning of these 48
ports between inter- and intra-group connectivity, as well as
the number of switches per group, depends on the size of the
system. In SLINGSHOT, the switches inside a group are always
fully connected through copper cables. Switches in different
groups are connected through long optical cables (up to 100
meters). Due to the full-connectivity both within the group and
between groups, this topology has a diameter of 3 switch-to-
switch hops.

Thanks to the low-diameter, applications performance only
marginally depend on the specific node allocation. We report
in Figure 4 the latency and the bandwidth between nodes
at different distances, and for different message sizes on
an isolated system. We consider nodes connected to ports
on the same switch (1 inter-switch hop), connected to two
different switches in the same group (2 inter-switch hops), and
connected to two different switches in two different groups (3
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Fig. 3: SLINGSHOT Topology. In this specific example we
show the topology of the largest 1-dimensional Dragonfly
network that can be built with the 64-ports ROSETTA switches.
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inter-switch hops). For the same switch case, we observed no
significant difference when using two ports on the same switch
tile or on two different tiles.

First, we observe that, in the worst case, the node allocation
has only a 40% impact on the latency for 8B messages and
that, starting from 16KiB messages we observe less than 10%
difference in latency between the different node distances.
The same holds for bandwidth, with less than 15% difference
between the different distances across all the message sizes. In
some cases, we observe a slightly higher bandwidth when the
nodes are in two different groups, because more paths connect
the two nodes, increasing the available bandwidth.

In the largest system (shown in Figure 3), each group has
32 switches (for a total of 32× 16 = 512 nodes, and switches
inside each group are fully connected by using 31 switches
ports. The remaining 17 ports from each switch are used to
globally connect all the groups in a fully connected network.
In this specific case, because each group contains 32 switches
and each switch uses 17 ports to connect to other groups, each
group has 32 × 17 = 544 connection towards other groups.
This leads to a system having 545 groups, each of which is
connected to 512 nodes, for a total of 279 040 endpoints at full
global bandwidth3. This number of endpoints satisfies both

3In practice, the addressing scheme limits the number of groups to 511, for
a total of 261 632 nodes.



exascale supercomputers and hyperscale data centers demand.
Indeed, this is larger than the number of servers used in data
centers [16], and much larger than the number of nodes used
by Summit [17], the most performing supercomputer at the
time being, that currently relies on 4 608 nodes and delivers
200PFlop/s. Thanks to this large number of endpoints, each
computing node can have multiple connections to the same
network, increasing the injection bandwidth and improving
network resiliency in case of NICs failures.

C. Routing

In Dragonfly networks (including SLINGSHOT), any pair
of nodes is connected by multiple minimal and non-minimal
paths [12], [18]. For example, by considering the topology in
Figure 3, the minimal path connecting N0 to N496 includes
the switches S0 and S31. In smaller networks, due to links
redundancy,multiple minimal paths are connecting any pair
of nodes [18]. On the other hand, a possible non-minimal
path involves an intermediate switch that is directly connected
to both S0 and S31. The same holds for nodes located in
different groups. In this case, a non-minimal path crosses an
intermediate group.

Sending data on minimal paths is clearly the best choice
on a quiet network. However, in a congested network, with
multiple active jobs, those paths may be slower than longer
but less congested ones. To provide the highest throughput
and lowest latency, SLINGSHOT implements adaptive routing:
before sending a packet, the source switch estimates the load
of up to four minimal and non-minimal paths and sends the
packet on the best path, that is selected by considering both the
paths’ congestion and length. The congestion is estimated by
considering the total depth of the request queues of each output
port. This congestion information is distributed on the chip by
using a ring to all the forwarding blocks of each input port. It is
also communicated between neighboring switches by carrying
it in the acknowledgement packets. The total overhead for
congestion and load information is an average of four bytes in
the reverse direction for every packet in the forward direction.
As more packets take non-minimal paths and therefore average
hop count per packet increases, both the latency and the link
utilization increase. Therefore, SLINGSHOT adaptive routing
biases packets to take minimal paths more frequently, to
compensate for the higher cost of non-minimal paths.

D. Congestion Control

Two types of congestion might affect an interconnec-
tion network: endpoint congestion, and intermediate conges-
tion [6]. The endpoint congestion mostly occurs on the last-
hop switches, whereas intermediate congestion is spread across
the network. Adaptive routing improves network utilization
and application performance by changing the path of the
packets to avoid intermediate congestion. However, even if
adaptive routing can bypass congested intermediate switches,
all the paths between two nodes are affected in the same way
by endpoint congestion. As we show in Section III-A, this

was a relevant issue on other networks, particularly for many-
to-one traffic. In this case, due to the highly congested links
on the receiver side, the adaptive routing would spread the
packets over the different paths but without being able to avoid
congestion, because it is occurring in the last hop.

Congestion control helps in mitigating this problem by
decreasing the injection bandwidth of the nodes generating the
congestion. However, existing congestion control mechanisms
(like ECN [19] and QCN [20], [21]) are not suited for HPC
scenarios. They work by marking packets that experience
congestion. When a node receives a packet that has been
marked, it asks the sender to slow down its injection rate.
These congestion control algorithms work relatively well in
presence of large volume and stable communications (known
as elephant flows), but tend to be fragile, hard to tune [22],
[23], and generally unsuitable for bursty HPC workloads.
Indeed, in standard congestion control algorithms, the control
loop is too long to adapt fast enough, and while converging
to the correct transmission rate, the offending traffic can still
interfere with other applications.

To mitigate this problem, SLINGSHOT introduces a sophis-
ticated congestion control algorithm, entirely implemented in
hardware, that tracks every in-flight packet between every
pair of endpoints in the system. SLINGSHOT can distinguish
between jobs that are victims of congestion and those who
are contributing to congestion, applying stiff and fast back-
pressure to the sources that are contributing to congestion. By
tracking all the endpoints pairs individually, SLINGSHOT only
throttles those streams of packets who are contributing to the
endpoint congestion, without negatively affecting other jobs
or other streams of packets within the same job who are not
contributing to congestion. This frees up buffers space for the
other jobs, avoiding HOL blocking across the entire network,
and reducing tail latencies, which are particularly relevant for
applications characterized by global synchronizations.

The approach to congestion control adopted by SLINGSHOT
is fundamentally different from more traditional approaches
such as ECN-based congestion control [19], [20], and leads to
good performance isolation between different applications, as
we show in Section III-A.

E. Quality of Service (QoS)

Whereas congestion control partially protects jobs from
mutual interference, jobs can still interfere with each other.
To provide complete isolation, in SLINGSHOT jobs can be
assigned to different traffic classes, with guaranteed quality of
service. QoS and congestion control are orthogonal concepts.
Indeed, because traffic classes are expensive resources requir-
ing large amounts of switch buffers space, each traffic class
is typically shared among several applications, and congestion
control still needs to be applied within a traffic class.

Each traffic class is highly tunable and can be customized
by the system administrator in terms of priority, packets
ordering required, minimum bandwidth guarantees, maximum
bandwidth constraint, lossiness, and routing bias [5]. The
system administrator guarantees that the sum of the minimum



bandwidth requirements of the different traffic classes does
not exceed the available bandwidth. Network traffic can be
assigned to traffic classes on a per-packet basis. The job
scheduler will assign to each job a small number of traffic
classes, and the user can then select on which class to send
its application traffic. In the case of MPI, this is done by
specifying the traffic class identifier in an environment vari-
able. Moreover, communication libraries could even change
traffic classes at a per-message (or per-packet) granularity. For
example, MPI could assign different collective operations to
different traffic classes. For example, it may assign latency-
sensitive collective operations such as MPI_Barrier and
MPI_Allreduce to high-priority and low-bandwidth traffic
classes, and bulk point-to-point operations to higher bandwidth
and lower priority classes.

Traffic classes are completely implemented in the switch
hardware. A switch determines the traffic class required for a
specific packet by using the Differentiated Services Code Point
(DSCP) tag in the packet header [24]. Based on the value of the
tag, the switch assigns the packet to one of the multiple virtual
queues. Each switch will allocate enough buffers to each traffic
class to achieve the desired bandwidth, whereas the remaining
buffers will be dynamically allocated to the traffic which is
not assigned to any specific traffic class.

F. Ethernet Enhancements

To improve interoperability, and to better suit datacenters
scenarios, SLINGSHOT is fully Ethernet compatible, and can
seamlessly be connected to third-party Ethernet-based devices
and networks. SLINGSHOT provides additional features on top
of standard Ethernet, improving its performance and making
it more suitable for HPC workloads. SLINGSHOT uses this
enhanced protocol for internal traffic, but it can mix it with
standard Ethernet traffic on all ports at packet-level granularity.
This allows SLINGSHOT to achieve high-performance, while
at the same time being able to communicate with standard
Ethernet devices, allowing it to be used efficiently in both
supercomputing and datacenter worlds.

To improve performance, SLINGSHOT reduces the 64 Bytes
minimum frame size to 32 Bytes, allows IP packets to be
sent without an Ethernet header, and removes the inter-packet
gap. Lastly, SLINGSHOT provides resiliency at different lev-
els by implementing low-latency Forward Error Correction
(FEC) [25], Link-Level Reliability (LLR) to tolerate tran-
sient errors, and lanes degrade [26] to tolerate hard failures.
Moreover, the SLINGSHOT NIC provides end-to-end retry to
protect against packet loss. These are relevant features in high-
performance networks. For example, FEC is required for all
Ethernet systems at 100Gb/s or higher, independently from
the system size, and LLR is useful in large systems (such
as hyperscale data centers) to localize the error handling and
reduce end-to-end retransmission.

G. Software Stack

Communication libraries can either use the standard TCP/IP
stack or, in case of high-performance communication li-

braries such as MPI [27], [28], Chapel [29], PGAS [30] and
SHMEM [31], the libfabric interface [32]. Cray contributed
with new features to the libfabric open-source verbs provider
and RxM utility provider to support the SLINGSHOT hard-
ware. All HPC traffic is layered over RDMA over Converged
Ethernet (RoCEv2) and data is sent over the network through
packets containing up to 4KiB of data plus headers and trailers.
Headers and trailers include Ethernet (26 bytes including the
preamble), IPv4 (20 bytes), UDP (8 bytes), InfiniBand (14
bytes), and an additional RoCEv2 CRC (4 bytes), for a total
of 62 bytes. Cray MPI is derived from MPICH [33] and
implements the MPI-3.1 standard. Proprietary optimizations
and other enhancements have been added to Cray MPI targeted
specifically for the SLINGSHOT hardware. Any MPI imple-
mentation supporting libfabric can be used out of the box on
SLINGSHOT. Moreover, standard API for some features, like
traffic classes, have been recently added to libfabric and could
be exploited as well. We report in Figure 5 the latencies for
different message sizes and for different network protocols.
We observe that for small message sizes, MPI adds only a
marginal overhead to libfabric.

101 103 105 107

Size (Bytes)

100

101

102

103
RT

T/
2 

(u
se

c)
IB Verbs
Libfabric

MPI
UDP

TCP

8 512 1024
1.3
2.3
3.3

MPI

IP

TCP UDP

RoCEv2 NIC

Libfabric

IB Verbs

NIC driver

OS

HW

TCP 
socket

UDP
socket

Fig. 5: Half round trip time (RTT/2) for different message
sizes (x-axis) and software layers.

Moreover, we show in Figure 6 the bisection bandwidth (i.e.,
the bandwidth when half of the nodes send data to the other
half of the nodes and vice versa) and the MPI_Alltoall
bandwidth on SHANDY, a SLINGSHOT-based system using
1 024 nodes (see Section III for details). We report the results
for different processes per node (PPN) and different message
sizes. This system is composed of eight groups, and all the
bisection cuts cross the same number of links. In this system,
each group has 56 global links out of 112 (8 towards each
other group), to match the injection bandwidth. Each of the 4
groups in one partition is connected to each of the 4 groups
in the other partition, and the total number of links crossing a
bisection cut is 4·4·8 = 128. Because each link has a 200Gb/s
bandwidth, and we are sending traffic in both directions, the
peak bisection bandwidth is 128 · 200Gb/s · 2 = 6.4Tb/s.

In an all-to-all communication, each node sends 7/8 of
the traffic to nodes in the other 7 groups and 1/8 of the
traffic to nodes in the same group. Because this system has
56 ·8 = 448 global links, the all-to-all maximum bandwidth is
8/7 · 448 · 200Gb/s = 12.8Tb/s. Note that MPI_Alltoall
can achieve twice the bisection bandwidth because half of
the connections terminate in the same partition [34]. The plot
shows that the MPI_Alltoall reaches more than the 90%
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of the theoretical peak bandwidth, without any packet loss. We
observe a performance drop for 256 bytes messages because,
to reduce memory usage, the MPI implementation switches to
a different algorithm [35] for messages larger than 256 bytes.

III. PERFORMANCE STUDY

We now study the performance of the SLINGSHOT intercon-
nect on real applications and microbenchmarks, by focusing
on two key features of SLINGSHOT, namely congestion control
and quality of service management. For our analysis, we
consider the following systems:

• CRYSTAL: A system based on the Cray ARIES intercon-
nect [48]. This system has 698 nodes. The CPUs on the
nodes are Intel Xeon E5-269x. The system is composed
of two groups, each containing at most 384 nodes.

• MALBEC: A SLINGSHOT system with 484 nodes. CPUs
on the nodes are either Intel Xeon Gold 61xx or Intel Xeon
Platinum 81xx CPUs. The system is composed of four
groups, each containing at most 128 nodes. Each group
is connected to each other group through 48 global links
operating at 200Gb/s each. Each node has a Mellanox
ConnectX-5 EN NIC.

• SHANDY: A SLINGSHOT system with 1024 nodes. Com-
pute nodes are equipped with AMD EPYC Rome 64 cores
CPUs. The system is composed of eight groups, each
containing 128 nodes. Each group is connected to each
other group through 56 global links operating at 200Gb/s
each. Each node has two Mellanox ConnectX-5 EN NICs,
each connected to a different switch of the same network,
allowing a better load distribution and resilience in the
event of NICs failures.

We consider two SLINGSHOT systems, of different size, to
analyze the performance at different system scales. For all the
experiments, we booked these systems for exclusive use, to
have a controlled environment and avoid interference caused
by other users.

A. Congestion Control

To evaluate the ability of SLINGSHOT to react to congestion,
we divide the nodes in the system in two partitions: victim

nodes and aggressor nodes. The aggressor nodes generate
congestion that impacts the performance of victim nodes. We
consider two types of congestion patterns: endpoint congestion
and intermediate congestion, and we use the GPCNet code [6]
to generate those congestion patterns. We generate endpoint
congestion through a many-to-one (incast) communication pat-
tern, where a number of nodes send data to the same endpoint
by using MPI_Put, and intermediate congestion by using an
all-to-all pattern implemented through MPI Sendrecv. Both
aggressors exchange 128KiB messages. This decision is based
on characterization studies on production systems, that show
an average message size of ∼ 105 bytes both in collective and
point-to-point communications [49].

We consider the victim applications described in Table I.
Moreover, we also analyze the impact of congestion on mi-
crobenchmarks, include standard MPI operations, and the em-
ber microbenchmarks [50] reproducing some common com-
munication patterns in HPC applications (halo3d, sweep3d,
and incast). We first consider the results on 512 nodes. Then,
we show the results for different node counts. We consider
the following victim/aggressor splits: 460/52 (∼ 90%/10%),
256/256 (∼ 50%/50%) and 53/459 (∼ 10%/90%). Because
the implementation of some MPI collectives changes accord-
ing to the number of nodes used, we have chosen these splits
so that we run the victim with both power of two (256), even
(460) and odd (53) number of nodes. To further increase the
generated congestion, in some experiments we increase the
number of processes per node (PPN) used by the aggressor.
Each node used by the aggressor spawns PPN processes, each
of them performing the same communications. Namely, the
congestion pattern is concurrently executed PPN times.

Moreover, the allocation of the nodes to victims and
aggressors determines how many switches and groups are
shared between the two jobs and has a direct impact on the
performance of the victim. In our experiments, we consider the
three well-known allocation placement strategies [51] depicted
in Figure 7: linear, where we allocate the first n nodes to the
victim and the remaining nodes to the aggressor; interleaved,
where we interleave the nodes allocated to the victim and the
aggressor; and random, where we randomly allocate the nodes
to the victim and the aggressor.

We make sure that the data we report is statistically
sound [52]: for each microbenchmark, we execute the victim
at least 200 times and for at least 4 seconds. We stop
the benchmark when both the previous two conditions are
satisfied, and when the 95% confidence interval is within
5% of the median. We then consider for each iteration the
maximum time among the ranks. For the applications, we

= Node assigned to Victim = Node assigned to Aggressor

Linear Interleaved Random
S1 S2 S1 S2 S1 S2

N0 N1 N2 N3 N4 N5 N0 N1 N2 N3 N4 N5 N0 N1 N2 N3 N4 N5

= Switch

Fig. 7: Different victim/aggressor allocations.



TYPE APPL. DESCRIPTION

HPC

MILC It is a set of numerical simulation codes working on quantum chromodynamics (QCD) [36]. We use the su3_rmd kernel, that
decomposes a four dimensional grid, and mostly performs point-to-point neighbour communications and global reductions [37].

HPCG A set of communication and computational patterns matching a wide set of applications. It relies on sparse triangular solvers
and preconditioned conjugate gradient algorithms [3]. It mostly uses stencil communications and global reductions.

LAMMPS A molecular dynamics code that models an ensemble of particles in a liquid, solid, or gaseous state [38]. This kernel performs
reductions and point-to-point blocking and non-blocking communications, between nodes at different distances.

FFT Fast Fourier Transform on a 3D domain [39]. It employs broadcasts, scatters, and point-to-point communications [40].

Resnet-
proxy This is a ML/AI proxy application [41], reproducing the communication phases of a Deep500 benchmark [42]

Residual Neural Network (resnet). This application uses non-blocking reduction operations.

DC
Silo A fast in-memory transactional database [43]. Widely used in online transaction processing systems (OLTP).

Sphinx A speech recognition system [44], involving probabilistically pruning a large search tree.

Xapian A search engine [45] using a search index built from a snapshot of the English version of Wikipedia. Multiple queries are
executed, with a distribution similar to that of online search queries.

Img-dnn An application using a deep neural network-based autoencoder to identify handwritten characters [46].

TABLE I: Applications used as victim in the congestion tests. We consider both HPC and datacenter (DC) applications. Img-
dnn, Xapian, Sphinx and Silo are all single-client, single-server applications, coming from the Tailbench benchmark [47] for
latency-sensitive datacenter applications. We selected this subset because it covers a wide range of latencies, from microseconds
(Silo) to seconds (Sphinx).

consider the time reported by the application, that we execute
multiple times until the 95% confidence interval is within 5%
of the median.

We report in Figure 8 the time distribution for the Tailbench
applications, both when executed in isolation, and when ex-
ecuted with an incast aggressor, on both ARIES and SLING-
SHOT. We also annotate the 99th and 95th percentiles, to show
the impact of tail latency. We executed these experiments using
the linear allocation and a 10%/90% victim/aggressor ratio.
For Silo, Xapian and Img-dnn we observe severe performance
degradation due to congestion on ARIES, whereas we do not
observe any relevant effect on SLINGSHOT. For Sphinx, we
observe a smaller degradation because the communication to
computation ratio is lower than that of the other applications.
Moreover, we observe a higher tail latency on ARIES, which
further increases in the presence of congestion. It is worth
remarking that the congestion impact itself is enough to
characterize how much SLINGSHOT is affected by congestion.
In addition, we are also comparing SLINGSHOT with an
ARIES interconnect, to also show the improvements compared
to an existing interconnection network. Moreover, a similar
performance degradation to that we observed on ARIES has
also been observed on other interconnects [6], [11], [53].

Due to the large number of combinations of victims, aggres-
sors, and allocations, we provide a data summary of the linear
allocation results as a heatmap in Figure 9. Each element of
the heatmap represents the mean congestion impact C [6], i.e.,

C =
Tc

Ti
(1)

where Ti is the mean execution time of the victim when
executed in isolation, and Tc is the mean execution time of
the victim when co-executed with the aggressor. For example,
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the element on the top left corner represents the scenario where
MILC is executed together with an all-to-all aggressor. 10% of
the nodes are allocated to the aggressor, whereas the remaining
nodes are allocated to the victim. For this specific case, no
significant congestion impact is observed. On the other hand,
MILC experiences a 1.6 slowdown on ARIES due to endpoint
congestion (incast), when 10% of the nodes are allocated to
the aggressor. For the same scenario, we don’t observe any
slowdown on SLINGSHOT.

We report the applications and microbenchmarks results us-
ing two different (logarithmic) color scales, to better appreciate
the differences. Indeed, applications are usually less affected
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Fig. 9: Congestion effects on different victim and aggressor combinations. Each element of the heatmap represents the congestion
impact of the aggressor on the victim.

by congestion because, differently from microbenchmarks,
they also have computation phases. Because communications
are just a part of the overall execution time, even when
communications are severely affected by congestion, this does
not directly translate into a large performance degradation.

As reported in the heatmap, SLINGSHOT is always less
affected by congestion compared to ARIES. In the worst case,
we observed a 1.3x slowdown on SLINGSHOT, compared to
a maximum 93x slowdown on ARIES. Moreover, the conges-
tion impact increases when increasing the fraction of nodes
allocated to the aggressor application, and has a larger impact
on small message communications, due to the larger impact
of end-to-end latency on the overall performance. The effects
of congestion can be seen not only on microbenchmarks
but also on full applications. For example, LAMMPS is 17x
slower when executed together with an incast aggressor with
a 50/50 split on ARIES. Intermediate congestion (generated
through all-to-all communication), does not significantly affect
the systems we are analyzing, because the adaptive routing
algorithm successfully routes the packets around the congested
links. This means that, the additional load generated by the
all-to-all does not manifest as congestion.

Similar trends can be observed also for different node count,
higher PPNs, and other allocations. For space reasons, we do
not report all the heatmaps for each of these cases. Instead,
we summarize each heatmap by showing the distribution of
the heatmap elements (congestion impacts, Equation 1) across
all the victim/aggressor combinations. We show the result of
this comparison in Figure 10.

First, we show in Figure 10 ( A ) the congestion impact for

different allocations. For example, for the linear allocation, we
are showing the same data of Figure 9. However, instead of
showing all the individual congestion impacts, we now report
their distribution. For readability purposes, we cut the long
tails of the distributions, and we annotate on top of each violin
the maximum value. We observe that whereas on ARIES the
congestion impact for the linear allocation is never higher than
100, for the interleaved and random allocations we observe
values up to 150. We observed a similar effect on SLINGSHOT
but on a different scale. In this case, in all but one cases we
observe congestion impact values lower than two. Moreover,
differently from ARIES, the distribution on SLINGSHOT is less
spread, which indicates that the congestion control algorithm
is performing well across a wide set of victims and allocations.

In Figure 10 ( B ), we report a similar analysis, but now the
aggressors are using 24 processes per node (PPN) instead of
1, thus generating a higher load on the network. In this case,
the impact of congestion increases for ARIES, especially for
random allocations. On the other hand, SLINGSHOT is only
minimally impacted, showing a maximum congestion impact
∼ 200 times lower than on ARIES.

Lastly, in Figure 10 ( C ) we report the congestion impact
when using fewer nodes (128). Until now, we compared a
SLINGSHOT system (SHANDY, 1024 nodes) against a smaller
ARIES one (CRYSTAL, 698 nodes). To factor out possible
performance variations coming from different system sizes,
we now compare CRYSTAL with a smaller SLINGSHOT system
(MALBEC, 484 nodes). We also fix the number of nodes per
dragonfly group to 64, in order to allocate the same number of
groups (two) in both cases. On ARIES, the maximum conges-
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Fig. 11: Congestion impact
on 1 024 nodes of SHANDY.

tion impact goes from 154 (Figure 10 ( A )) to 40 (Figure 10
( C )) when using 128 nodes instead of 512. This can be
explained by the lower generated traffic (aggressors have now
fewer nodes), but also by the higher fraction of available global
bandwidth. On SLINGSHOT, the same experiment makes the
maximum congestion impact go from 2.3 to 1.5. We conclude
that SLINGSHOT is less affected by congestion, even when
varying the system size and the number of allocated nodes.

The results of Figure 11 show the congestion impact on
the applications when using all the 1 024 nodes on SHANDY.
We report the data when using a random allocation because
that is the one generating the most congestion (see Figure 10).
We can observe that even at full system scale the congestion
control effectively protects applications from congestion, with
a maximum 3.55x slowdown on LAMMPS when 75% of the
nodes are allocated to the incast congestor. Data on MILC
and HPCG with a 25%/75% aggressor/victim ratio is missing.
Indeed, they should run on 768 nodes, but they can only run
on a number of nodes which is a power of two.

We complete our analysis on the effects of congestion
by analyzing the impact of bursty congestion SLINGSHOT.
Indeed, in the previous experiments we always considered
persistent congestion, generated by sending messages with
a fixed size of 128KiB during the entire victim execution.
To analyze the impact of bursty congestion, we execute a
128 byte MPI_Alltoall microbenchmark (victim) with an
incast aggressor. This is one of the cases where we observed
the highest congestion impact on SLINGSHOT (see Figure 9).
We run this test on all the MALBEC nodes, splitting them
equally between aggressor and victim, with an interleaved
allocation strategy.

We report the results of this analysis in Figure 12. Each
heatmap corresponds to a different message size for the incast
aggressor. On each heatmap we report the congestion impact
when varying the number of messages in a burst (Burst
Size, on the y-axis) and the time between two subsequent
congestion bursts (Bursts Gap, on the x-axis). For example, the
bottom-left element in the first heatmap, represents the case
where the aggressor sends 106 consecutive messages, each
one containing 8 bytes. Before sending the next burst of 106
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Fig. 12: Impact of incast congestion on a 128 byte
MPI_Alltoall. We show the impact for different message
sizes, congestion duration, and time between subsequent con-
gestion bursts.

messages, the aggressor will wait 1 microsecond.
We observe that the incast aggressor does not affect the vic-

tim when sending too small messages or too large messages.
Indeed, small messages do not generate enough congestion,
whereas for large messages the congestion control algorithm
fully kicks in and throttle the aggressor. On the other hand,
for medium size messages, some congestion builds up before
the congestion control algorithm detects and reacts to it,
and we observe an increase in the congestion impact up to
1.21. However, as we shown in Figure 9, this is negligible
when compared to what happens on other types of systems.
Moreover, we observe the highest congestion impact for large
bursts and for small gaps between subsequent bursts. We
also observe no differences between bursts of 106 messages
and the persistent congestion. This shows that SLINGSHOT is
tolerant to both persistent congestion, and bursty and short-
lived congestion.

B. Traffic Classes

We now evaluate the ability of SLINGSHOT to provide per-
formance guarantees to jobs running by using traffic classes. It
is worth remarking that traffic classes and congestion control
are orthogonal concepts. Traffic classes can be used to protect
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a job (or parts of it) from other traffic, and they can allocate
resources fairly or unfairly between users and jobs. However,
even if resources are assigned fairly, congestion can still occur
due to jobs filling up the buffers. Congestion control is used
to avoid such situations within and across traffic classes.

All the experiments presented in the following have been
executed on MALBEC. We taper the bandwidth to 25% of
the available bandwidth, to force co-running jobs to in-
terfere with each other. We execute a job performing an
8B MPI_Allreduce together with a job performing a
256KiB MPI_Alltoall. Each job uses 64 nodes and 16
processes per node, and they are placed using the inter-
leaved allocation. We report in Figure 13 the congestion
impact of the MPI_Allreduce when using the same traffic
class of the MPI_Alltoall and when using a separate
traffic class. Each point represents the mean over 100 000
runs. The MPI_Alltoall is started around 0.4 millisec-
onds after the beginning of the test. We observe that when
MPI_Allreduce runs in the same traffic class of the
MPI_Alltoall, it experiences a congestion impact of 2.85
(i.e. is 2.85 times slower compared to when executed in
isolation). On the other hand, when executed in a separate
traffic class it only experiences a 1.15x slowdown compared
to the isolated case.

We now further investigate the capacity of SLINGSHOT
to enforce specific limits on traffic classes. We execute two
jobs, each running a bisection bandwidth test, with the second
one starting after 0.9 milliseconds from the beginning of the
test. Each job uses 16 processes per node and runs on 64
nodes. Jobs are placed by using the interleaved allocation. We
configure two traffic classes: TC1 with a minimum bandwidth
requirement of 80% of the available bandwidth, and TC2, with
a minimum 10% bandwidth required.

We report the results of this experiment in Figure 14. On
the upper part, we report the results we obtain when both
jobs run on the same traffic class (TC1). At the beginning of
the execution, the first job runs on an empty system and gets
100% of the available bandwidth. When the second job starts,
the available bandwidth is fairly shared between the two jobs.
Eventually, when the first job terminates the second job ramps
up and uses all the available bandwidth.

On the lower part of Figure 14, we report the results
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Fig. 14: Performance of two bisection bandwidth tests on
MALBEC (with a 25% tapering) when running in the same
traffic class (top) and when running into two separate traffic
classes (bottom).

when the first job runs in TC1 and the second job runs in
TC2. In this case, when the second job starts, the bandwidth
of the first job drops to 80% of the available bandwidth,
matching the minimum bandwidth required for TC1. The
second job required a minimum bandwidth of 10%, and it
gets the 20% of the available bandwidth. Indeed, there is an
extra 10% of bandwidth which was not allocated to either TC1
or TC2. SLINGSHOT decides to dynamically allocate this extra
bandwidth to TC2 because it is the traffic class with the lowest
bandwidth share. Eventually, when the first job terminates, the
second job uses all the available bandwidth.

IV. STATE OF THE ART

A. Interconnection Networks

Existing large-scale computing systems are characterized
by different types of interconnection networks, either based
on open standards or proprietary technology. These networks
have different topologies and provide different features. In
this section, we highlight the main characteristics of the most
common and actively developed interconnection networks, to
better understand the similarities and differences with SLING-
SHOT.

InfiniBand is an open standard for high-performance net-
work communications. Different vendors manufacture Infini-
Band switches and interfaces, and the InfiniBand standard is
not tied to any specific network topology. The most commonly
used InfiniBand implementations rely on Mellanox hardware,
with switches arranged in a fat tree topology [54]. For ex-
ample, both Sierra [55] and Summit [17], the two fastest
supercomputers at the time being, use such configuration.
Mellanox networks also provide other features to improve
application performance, such as switch offloading of MPI
collective operations, adaptive routing, congestion control, and
traffic classes. However, congestion control is usually not used
in large production systems due to difficulties in the tuning of



the algorithm [6]. Regarding interoperability with Ethernet,
Mellanox adopts a different approach than SLINGSHOT, re-
quiring traffic to be converted between InfiniBand and Ethernet
by using dedicated gateways.

Cray ARIES [48] is the 7th generation of Cray intercon-
nection networks. It is based on a Dragonfly topology and
supports different systems configuration up to 92 544 nodes
(Trinity [56], the largest ARIES system currently deployed,
has 19 420 nodes). It provides a peak injection bandwidth
of 81.6 Gb/s per node, and a rich set of features including
adaptive routing, collective operations offload, and remote
atomic operations. It uses fewer optical links than fat trees
networks, reducing the cost of the network.

Tofu Interconnect D (TofuD) [57] is the third generation
Tofu interconnection networks, which will be used by the
Fugaku supercomputer [58] (formerly known as Post-K).
TofuD provides a peak injection rate of 300Gb/s per node
and, like its predecessors, it is based on a 6D mesh/torus.
Around 25% of the links used by the interconnect are optical.
To reduce latency and improve fault resiliency, TofuD uses a
technique called dynamic packet slicing, to split the packets in
the data-link layer. This can either be used to split the packet
and improve the transmission performance or to duplicate
the packet to provide fault tolerance in case the link quality
degrades. Moreover, this interconnect provides an offload
engine, called Tofu Barrier, to execute collective operations
without involving the CPU.

The Dragonfly+ [59] is currently used by the Niagara
supercomputer [60]. It is a variation of the Dragonfly inter-
connect [12], where the switches inside a group are connected
through a fat-tree network. Similarly to the Dragonfly network,
this interconnect is characterized by different minimal and
non-minimal paths between each pair of nodes. The implemen-
tation used in the Niagara supercomputer relies on Mellanox
InfiniBand hardware. To select the optimal path, Dragonfly+
uses a variation of the OFAR adaptive routing [61], which at
each hop re-evaluates the optimal path to use. Explicit control
messages are sent among the switches to notify congestion
and avoid creating hotspots in the network.

Several other low-diameter networks [62] have been pro-
posed by the research community, including but not limited to
SlimFly [63], Megafly [64], HyperX [65], [66], Jellyfish [67]
and Xpander [68] topologies. On the data centers side,
Clos [69] is the most prevalent deployed topology. Whereas
the above mentioned low-diameter topologies are claiming to
have substantial cost-performance improvements, they have
been scarcely employed because of hard-to-deploy routing
schemes. Also, classical congestion control mechanisms (e.g.,
ECMP [70]) are not effective in such low-diameter networks
due to the scarcity of minimal paths [18]. SLINGSHOT ad-
dresses these issues by providing a low-diameter network with
an effective congestion control algorithm, setting a stepping
stone towards HPC data centers.

Overall, SLINGSHOT introduces a set of key features that
can be taken as reference for next-generation large-scale
computing systems. First, the end-to-end congestion control

algorithm can quickly react to congestion and is stable across a
wide set of applications and microbenchmarks. Moreover, traf-
fic classes provide additional flexibility and open new software
optimization opportunities. Lastly, it is natively interoperable
with existing Ethernet devices, and thanks to novel adaptive
routing strategies, it provides high network utilization also for
in-order RoCE traffic (see Figure 6).

B. Interconnection Networks Benchmarking

In this work we described the SLINGSHOT interconnection
network and, for the first time, we extensively evaluated it
across a wide set of microbenchmarks and real applications.
We reported both the isolated performance and the perfor-
mance under the presence of congestion.

Regarding the evaluation of the under-load system, different
works analyzed the impact of congestion (also known as
network noise) on application performance [5], [6], [11], [71]–
[74] on different types of networks. The GPCNet bench-
mark [6] has been recently proposed as a portable benchmark
for estimating network congestion. We used in this work the
same definition of endpoint/intermediate congestion and of
congestion impact used by GPCNet. Whereas the authors of
GPCNet also report some preliminary results on a SLINGSHOT
system, they do not provide a detailed view of the system
performance. Indeed, the main goal of GPCNet was to design
a portable congestion benchmarking infrastructure by using
a small set of victim microbenchmarks (random ring and
MPI_Allreduce) to easily compare different systems. How-
ever, this does not represent a wide spectrum of real scenarios.
On the other hand, we focus on the impact of congestion
on SLINGSHOT by using different microbenchmarks and both
on HPC and datacenters applications. Moreover, the GPCNet
paper only analyzes the impact of congestion for a fixed victim
message size, allocation, and aggressor/victim ratio. However,
as we show in Section III-A, all these factors play a role in
the observed congestion and they can be helpful to understand
the system performance.

V. CONCLUSIONS

Interconnection networks have a significant impact on the
performance of large computing systems, both in supercom-
puters and hyperscale datacenters. In this paper, we describe
and evaluate SLINGSHOT, the latest interconnection network
designed by Cray. We describe SLINGSHOT’s main features:
high-radix Ethernet switches, adaptive routing, congestion
control, and QoS management. We then evaluate SLING-
SHOT’s performance, both in isolation and when executing
different concurrent workloads.

Our results demonstrate that applications running on
SLINGSHOT are much less affected by congestion compared to
previous generation networks and that the congestion control
algorithm works on a wide set of different microbenchmarks
and HPC and datacenter applications. We also show that
allocation policies have a much lower impact on performance
on SLINGSHOT compared to previous generation networks.



Lastly, we demonstrate how SLINGSHOT can provide band-
width guarantees to jobs running in separate traffic classes.

The information we provide can be used by HPC and
datacenter system operators, administrators, users, and pro-
grammers to optimize, deploy, and manage parallel applica-
tions. A deep understanding of the interconnect’s features is a
prerequisite to ensure optimized operations and utilization of
computing resources in clouds and datacenters.
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