ETHz(irich e sl YL DINFK

TORSTEN HOEFLER — ETH ZURICH & MICROSOFT QUANTUM

An HPC Systems Guy’s View of Quantum Computing

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Who is this guy and what is he doing here?

BLUE WATERS

SSSSSSSSSSSSSSS Ate mng%

1 g 3 o 6 o 2 5 e 0

Using Advanced MR!:- _ ;‘;

[/
Modern Features of the 2=

Message-Passing Interface

aaSrore. ETH:zurich —

1 professor, 6 scientific staff, 13 PhD students 6.5k staff, 20k students, focus on research Rajeev Thakur

‘ ‘ ' Ewing Lusk
Applications Programming Systems
oy -{#]}

-

L q#
LIQUI|>

[1] M. Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, IEEE/ACM SC14, best student paper

N

i

e

T
X

Y

<A

g
. P N RS v At
FURRERE ST N Tl e AT

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Efficient CMOS
peA>E &

Asynchronous CMOS circuits
e 1000x energy benefit
Integrates compute (neurons) and
memory/communication (synapses)
Very specialized
* Network and storage
e Phrase your problem as
inference!
Even learning is hard
e Comparatively little work
e Suddenly much lower energy
benefits ...

image sourcer21stcentury.com

Completely different paradigm
e Concept of qubits
e Bases on quantum mechanics
(which only works in isolation)
Many different ideas how to build
* lon trap (ions trapped in fields)
e Optical
e Spin-based
e Superconducting
* Majorana qubits
... (none proven to scale)
Needs new algorithms to be useful
e Algorithms are limited

image source: intel.com

LR

- -

3"' iy

FPGAs or CGRAs or GPUs

* Have been around for a while
Use transistors more efficiently

e Accelerators

* Custom architectures

* Reconfigurable datapaths
Adapt architecture to problem

* Dataflow + Control Flow
Cryogenic/superconducting ©
Main challenge

* Programmability!

e See our SC18 tutorial

“Productive Parallel
Programming for FPGA”

AN 1.

image source: intel.com

810.00375v1l [quant-ph] 30 Sep 2018

Using Hoare logic for quantum circuit optimization

Thomas Héner Torsten Hoefler Matthias Troyer
Institute for Theoretical Physics Computer Science Institute for Theoretical Physics
ETH Zurich ETH Zurich ETH Zurich
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland
haenert@phys.ethz.ch htor@inf.ethz.ch troyer@phys.ethz.ch

Abstract

By employing quantum mechanical phenomena such as su-
perposition, entanglement, and interference, quantum com-
puters promise to perform certain computations exponen-
tially faster than any classical device. Precise control over
these physical systems and proper shielding from unwanted
interactions with the environment become more difficult
as the space/time volume of the computation grows. Code
optimization is thus crucial in order to reduce resource re-
quirements to the greatest extent possible. Besides manual
optimization, previous work has successfully adapted clas-
sical methods such as constant-folding and common subex-
pression elimination to the quantum domain. However, such
classically-inspired methods fail to exploit certain optimiza-
tion opportunities that arise due to entanglement. To address
this insufficiency, we introduce an optimization methodol-
ogy which employs Hoare triples in order to identify and
exploit these optimization opportunities. We implement the
optimizer using the Z3 Theorem Prover and the ProjectQ
software framework for quantum computing and show that
it is able to reduce the circuit area of our benchmarks by up
to 5x.

1 Introduction

Quantum computers promise to solve certain computational
tasks exponentially faster than classical computers. As a re-
sult, significant resources are being spent in order to make
quantum computing become reality. In anticipation of the

necessary layers of abstraction to facilitate software develop-
ment, these packages include optimizing compilers. Inspired
by previous work in the classical domain, these programs
allow merging of quantum operations at various layers of
abstraction [15, 34], e.g., merging of rotations that are ap-
plied successively to the same quantum bit (qubit), and using
code annotations to identify patterns that are common in
quantum computing, akin to pragma statements in classical
computing [15, 34]. Further optimization opportunities can
be created by employing a set of commutation relations [28]
to reorder operations. In general, however, this approach
incurs a cost that is exponential in the number of qubits
that the reordered operations act upon. Furthermore, sev-
eral methods have been developed for exact circuit synthesis
with certain optimality guarantees [1, 10, 11, 23, 27]. How-
ever, these methods are not suitable for optimization of large
quantum circuits.

Despite these efforts, most of the progress made in, e.g.,
the aforementioned quantum chemistry applications have
been due to manual circuit optimization (17, 21] and the
derivation and evaluation of superior error bounds [30]. This
suggests that the capabilities of optimizing compilers may
still be significantly improved.

To this end, one may first consider differences between
manual and automatic optimization. For instance, in contrast
to automatic methods, humans tend to harness additional
information such as the circumstances under which a given
subroutine is invoked. While compilers may not be able to

spcl.inf.ethz.ch
. 4 @spcl_eth

ETH:zurich

v ovien ETHZzUrich
What is a qubit and how do | get one?

“I don't like it, and I'm sorry | ever had anything to do with it.”
Schrodinger (about the probability interpretation of quantum mechanics)

W) o5 0 e () laol el =1

For example: |+) = % |0) + % |1)

A qubit caninclude a lot of information in &y and a4 but can only sample one bit while losing all

(encoding n bits takes Q(n) operations) —!:‘STRI(‘TI{ l' I‘ “ Sq No GOPY

l]‘l A

n qubits live in a vector space of 2*complex numbers (all combinations + entanglement)

W= D ail) e, %) = @pl00) +ayl01) + ayl10) + as[11)
(=0.2"-1

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Example: adding 2" 'numbers in O(log n) time

Reminder: Classical Adder

0 ——

1 logarithmic
depth

O .

1 linear

0 work

Quantum Adder
10)a ol |
L
@) = <=(100) +101) + 110) + 1) +
IO)tl4
L
0
00 —{H]
|b) = F(|00) +101) + |10) + |1b)) logarithmic
UM vy depth
LH]
|0)
linear
|0) work
2n ¢

final adder state
(entangled “probability distribution”)

1]
a3

0

1 |Watp)
a -Ii b

1 print(a, a+b)

(“measure”)

c

0

We add all 2"numbers in parallel but only recover n classical bits!

T

A Corollary to Holevo’s Theorem (1973): at most n classical bits can be
extracted from a quantum state with n qubits even though that system
requires 2™ — 1 complex numbers to be represented!

My corollary: practical gquantum algorithms read a linear-size input and
modify an exponential-size quantum state such that the correct (polynomial
size) output is likely to be measured.

Question: Are quantum algorithms good at solving problems where a
solution is verifiable efficiently (polynomial time)? Answer: Kind of ©

ASIICL v eseen ETHzUrich

So quantum computers can solve NP-complete problems!?

A problem is in NP if a solution can be verified deterministically in polynomial time.

= Even with quantum computing, it seems that P # NP (limited by linearity of operators). Quantum is at
least as powerful as classic, thus, we do not know!

= New complexity class: Bounded-error Quantum Polynomial time (BQP)
= Quantum version of to Bounded-error Probabilistic Polynomial time (BPP)

NPI - e.g., graph isomorphism factoring, discrete logarithm

NP-complete

spcl.inf.ethz.ch oo o
v ovien ETHzUrich

Quantum algorithms are very complex (i.e., weird)

Most quantum programs recombine known algorithmic building blocks!

Amplitude Amplification Quantum Fourier Transform

Amplify probability of the “right” DFT on amplitudes of a quantum Measure eigenvalues of a unltary
output state operator

'EY

= (O(nlogn) gates for 2™ elems
= Used in factoring and discrete
logarithm

Used to compute eigenvectors

= Using quantum interference :
Used to solve linear systems

= E.g., Grover’s search
= Often O(v2") iterations

Quantum Walks Hamiltonian Simulation

Speedup mixing times in Simulate nature © (not relevant for performance/HPC)

randomized algorithms = Quantum teleportation
= Quantum version of random EPR-pair based proofs/certificates

walks Certified random number generation

= Between quadratic and (rarely)
exponential speedup

Determine eigenvalues in O ()

= Exponential speedup (over
best known) classical
algorithm for quantum effects in physics,
chemistry, material science problems

Wi — o/ = B v esien ETHziirich

How does a quantum computer work?

spcl.inf.ethz.ch oo o
v owien ETHZz(rich

Hardware and software architecture for quantum computing

qubits bits abstraction
g Quantum Instruction Qi plrogrammmg SW
circuits stream + data anguage
" Q intermediate
(liquid el Build Gates Factory representation
nittlolf\j\r/\) g @ (T, Rotation, multi- control and Microcoded MW
< — a trol, ... i i , .
= (o |} contiol, . qubit routing instructions
o,
4K =7 QEC Codes Control for Microcoded
(liquid = _ ; Mw
helium) T ﬁ (Steane e'tc., 1:n QFC (varies instructions
<10W T mapping) with code)
<0.1K :
(dilution T 2 Phy5|cal Analog pulse Qubit control HW
(Eitigeration) @ guantum state generators pulses

<0.01W qubits Q.

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Full Example: Grover’s search

0A@HO

operation GroverSearch(n_searchQubits: Int): (Result[]) {
body {

allocate mutable resultElement = new Result[n_searchQubits];

| D n : i i
LS%,ZJS ” ru51ng (qubits = Qubit[n_searchQubits]) { I Q# COde

IApplyToEachCA(H, qubits};l// qubits to uniform superposition

‘let n_iterations = Floor(©.25 * PI() ‘
. . * Sqrt(ToDouble(2”n_searchQubits -
= Task: find x € D for which f(x) =y art Lk Qubits)))
(invert f(x)) // Grover iteration
. . . for_(nonce in 1..n iterations) {
" Classical requires 0(|D|) quenes OracleAND(qubits);l // flips phase of desired state

" Quantum reqUireS 0(|D|) queries [/ apply Grover diffusion operator
ApplyToEachCA(H, qubits);
ApplyToEachCA(X, qubits);

(Controlled Z)(qubits[1..n_searchQubits-1], qubits[@]);
T ApplyToEachCA(X, qubits);
I } average ApplyToEachCA(H, qubits);
/N S SN N (U (U ISNNEN PSS .. }
0 1 i I I I . set resultElement = MultiM(qubits);

}

[0..00) |0...01) [0..10) [0..11) -- 13 e 1..10) |1..11) return (resultElement);

Quadratic speedup? Grover on a real machine

1.

2.

3.

.

6.

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Performance estimates must be understood to be believed (inspired by Donald Knuth’s “An algorithm must be seen to be believed”)

Query complexity model — how algorithms are developed
n T = E\/Z”l queries (|[D| = 2™ - represented by n bits)

Express (oracle and diffusion operator) as n-bit unitary
= Assuming O n-bit operations for oracle!

= T=0 E \/2_"| n-bit operations - T; = E\/Z_"l

/

N G S A WY
YT 7 7 77

Decompose unitary into two-bit (+arbitrary rotation) gates

= T=0, E\/Z_"l - 2(n — 1) elementary operations - Ty = E \/Z_nl 4(n—1)

Design approximate implementations in discrete gate set (using HTHT...)
= T =05 E \/2_"| - 2(n — 1) discrete T gate operations - T; = E\/Z_"l -48(n—1)
Mapping to real hardware (swaps and teleport)

= Not to simple to model, depends on oracle — potentially G)(\/ 2") slowdown

Quantum error correction
= Not so simple, depends on quality of physical bits and circuit depth, huge constant slowdown

T8
[TH—o-

o o

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Quadratic speedup? Grover on a real machine

Performance estimates must be understood to be believed (inspired by Donald Knuth’s “An algorithm must be seen to be believed”)

Quantum computer with logical error rates < 10724
and gate times of 10~°s vs. classical at 1 teraop/s.

seconds

10-10

38 billion years
#gates depth #qubits
k T Clifford T overall
128 11:19:: 286, 111.55 (2806 1,06 2801116 - 281 2,953
192 1.81-218 117.2119 1.921.212 133.2113 4 449
256 1.41-2151 183.2151 144 .24 157.2145 6681

1018 4

1014 4

1010 4

106

102 4

10~2 4

1076

age of the universe (13.772 billion years) e
P
\/66 s
(O e
100 years -
1 year T
l"””—"
A
BN
QT T
- - ,’ '
-~ L]
]
L]
.~ I
,I’ '
]
- 0
-~]
“]
:
6 2‘0 4;0 . ﬁb SIO 1(:’10
search bits

Table 5. Quantum resource estimates for Grover’s algorithm to attack AES-k, where k& € {128,192, 256}.

from Grassl et al.: “Applying Grover's algorithm to AES: quantum resource estimates”, arXiv:1512.04965

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Microsoft Quantum

Real applications?

Quantum Chemistry/Physics

= Original idea by Feynman — use quantum effects to evaluate quantum effects
= Design catalysts, exotic materials, ...

Breaking encryption & bitcoin

= Big hype — destructive impact — single-shot (but big) business case
= Not trivial (requires arithmetic) but possible

N

J §
/
e

Wilizg)
S o
b W
N\
9. »

7

Accelerating heuristical solvers

= Quadratic speedup can be very powerful!
= Requires much more detailed resource analysis = systems problem

Quantum machine learning

= Feynman may argue: “quantum advantage” assumes that circuits cannot be simulated GOOGLE. ALIBABA SPAR OVER

classically = they represent very complex functions that could be of use in ML? R}P‘EIEIMCFXQH QUANTTN

S | -
)

me on the rocky
[] path to develop my
ThankS! [intuition for

quantum computation

Microsoft Quantum

= Special thanks to Matthias Troyer and Doug Carmean

= Thanks to: Thomas Haener, Damian Steiger, Martin
Roetteler, Nathan Wiebe, Mike Upton, Bettina Heim,
Vadym Kliuchnikov, Jeongwan Haah, Dave Wecker,
Krysta Svore

= And the whole MSFT Quantum / QuArC team! ; b 3 P .

All used images belong to the respective owners — source list in appendix

Microsoft Quantum

