
NPBench: A Benchmarking Suite for High-Performance NumPy
Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten Hoefler

Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT
Python, already one of the most popular languages for scientific
computing, has made significant inroads in High Performance Com-
puting (HPC). At the center of Python’s ecosystem is NumPy, an
efficient implementation of the multi-dimensional array (tensor)
structure, together with basic arithmetic and linear algebra. Com-
pared to traditional HPC languages, the relatively low performance
of Python and NumPy has spawned significant research in compil-
ers and frameworks that decouple Python’s compact representation
from the underlying implementation. However, it is challenging to
compare language compatibility and performance among different
frameworks and architectures without a standard set of benchmarks
and metrics. To that end, we introduce NPBench, a set of NumPy
code samples representing a large variety of HPC applications.
We use NPBench to test popular NumPy-accelerating compilers
and frameworks on a variety of metrics. NPBench will guide both
end-users and framework developers focusing on performance and
will drive further use of Python in the high-performance scientific
domains.

CCS CONCEPTS
• General and reference → Measurement; Metrics; Evalua-
tion; Performance.

KEYWORDS
High Performance Computing, Benchmark, Python, NumPy
ACM Reference Format:
Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten
Hoefler. 2021. NPBench: A Benchmarking Suite for High-Performance
NumPy. In 2021 International Conference on Supercomputing (ICS ’21), June
14–17, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3447818.3460360

1 INTRODUCTION
Python is quickly developing towards being a dominant language
in scientific applications ranging from diverse scientific domains
such as molecular dynamics [33, 41] and climate codes [50] to
machine learning [2, 37]. This accelerating adoption, which has
pushed Python to be the second most-used language in open source
projects in 2020 [19], is driven by its rich ecosystem of domain-
specific libraries and frameworks but also its seamless integration
into Jupyter notebooks [29]. The latter enables reproducible scien-
tific workflows as simple lab notes but also most complex large-
scale experiments. This high productivity and broad applicability
of the core Python language also result in strong industry support,

ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2021 International
Conference on Supercomputing (ICS ’21), June 14–17, 2021, Virtual Event, USA, https:
//doi.org/10.1145/3447818.3460360.

Performance (§5.2)

Productivity (§4.3)

Weather (2)

Physics (9)

Chemistry (4)

Learning (6)

Signals (3)

Graphs (2)

Solver (10)

Other (3)

LinAlg (12)
NumPy baseline

DaCe

Numba

CuPy

Domains (§3.1) Metrics Frameworks (§4.1)

Pythran

Figure 1: Overview of NPBench: represented scientific do-
mains (number of example codes in brackets), metrics, and
frameworks.

especially in big data, data science, and deep learning. More and
more machine learning and artificial intelligence techniques are
finding their way into scientific simulations by amending existing
codes. Therefore, Python’s use leads to strong synergies among
industry, academia, and national labs, centered around its software
ecosystem.

Apart from being the interface to data management, Python is
also increasingly seen as a framework for scientific computing itself.
Python’s specific strength is the rich ecosystem of domain-specific
libraries and frameworks, such as pandas, SciPy, Scikit-learn, Py-
Torch, TensorFlow, andMatplotlib, to name a few. The NumPy array
library [23] forms a foundation for most, if not all, of those frame-
works and many more. NumPy has been carefully optimized to cir-
cumvent many of Python’s traditional weaknesses in performance.
It uses careful low-overhead data storage schemes and utilizes opti-
mized libraries for many operations. In fact, optimizing NumPy has
been in its users’ core interests, and several specializations exist for
this reason [2, 37]. Its central position in performance-conscious sci-
entific computing makes the NumPy library of paramount interest
for high-performance, scientific computing, and machine learning
workloads.

Techniques for achieving high performance are often specific
to each domain. For example, machine learning frameworks use
NumPy-like arrays and call operators from hand-optimized libraries
(e.g., oneDNN [27] or cuDNN [13]) to achieve high performance.
Nevertheless, operators that are not supported by the hand-picked
libraries are often executed inefficiently. The state of scientific com-
puting in Python is similar—if applications are using a set of pre-
defined routines (e.g., BLAS or LAPACK) through the interfaces of
NumPy or SciPy, then their execution is optimized. However, many
high-performance codes require a large variety of functionality far
beyond tuned scientific computing and machine learning operators.
Furthermore, such codes often use series of small operator invoca-
tions that may not be efficient to accelerate individually. Thus, not

https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360

ICS '21, June 14�17, 2021, Virtual Event, USA Ziogas et al.

all NumPy operations can be accelerated manually, and higher-level
optimizations play a crucial role in NumPy's ecosystem.

Several approaches exist to improve the performance of NumPy
that go beyond merely calling optimized libraries. Most of those
approaches analyze the NumPy source code in some way and gen-
erate more e�cient code. Some, such as Numba [30], DaCe [11],
Pythran [22], or CuPy [35] require relatively minor changes to the
source code while others such as Cython [10] require programmers
to write C-like code. We �nd that even though all those e�orts
focus exclusively on performance, it is hard, if not impossible, to
compare their performance fairly.

However, even with all these e�orts, NumPy performance is not
always su�cient. To drive the high-performance Python ecosystem,
we de�ne NPBench, a set of representative high-performance com-
puting benchmarks for NumPy implementations. NPBench includes
52 benchmarks from 8 scienti�c domains of performance-critical
workloads in NumPy, ranging from linear algebra to full physics sim-
ulations and deep learning. Each benchmark is a carefully extracted
performance-critical kernel from a larger application to focus on
the critical pieces with a portable benchmark suite. NPBench allows
us to establish a set of core features and principles of importance
in NumPy codes that deserve special attention when tuning perfor-
mance. Figure 1 shows an overview of NPBench and the structure
of this paper.

NumPy and the Python language are at the pole position to be-
come the main driver of the next generation of scienti�c computing
applications. Python already took a large fraction of the scienti�c
community by storm, and its strong industry support will boost
developments further. High-performance computing is now ready
to seize this opportunity and adopt a productive language into its
core. With NPBench, we establish a clear set of targets to guide and
accelerate high-performance frameworks' development. As such,
NPBench's goals are similar to those of other impactful benchmarks
such as the NAS Parallel Benchmarks [7], the Mantevo benchmark
suite [25], or the ImageNet dataset from deep learning [44]. With
its open and extensible structure, we expect NPBench to develop
into a central catalyst for adopting Python by the high-performance
computing community.

2 NUMPY
NumPy is a Python module that centers around the concept of
ndarray, an e�cient multidimensional array object. It includes a
plethora of optimized routines that operate on those array objects.
These range from basic arithmetic operations, through linear al-
gebra, to statistics and simulations. With these features, NumPy
facilitates writing pythoniccode that is short and concise, readable,
and potentially contains fewer bugs. Furthermore, by using array-
wide operators, NumPy allows writing code in vectorized form,
driving its adoption by the scienti�c community.

2.1 The NumPy ndarray
The data structure of the ndarray includes a pointer to the data
itself and necessary metadata, such as the data type of the array
elements, theshapeof the array, and the accessstrides. The shape
is an ordered tuple of the lengths of the array in each dimension.

For example, an" � # matrix has shape¹"• # º. NumPy ndarrays
have �xed size, and their elements must be of the same data type.

We can access the data of an ndarray object with a variety of
di�erent syntax. Indexing with slices of the formstart:stop:step
returns aviewof the underlying data, avoiding unnecessary copies.
On the other hand, indexing with scalar coordinates, masks, and
boolean or integer arrays (also calledadvanced indexing) produces
a copy of the data. A boolean indexing array has the same size
as the data array, where a true or false value indicates whether
the corresponding data element should be copied or updated. An
integer indexing array consists of integer tuples that correspond to
the data elements' coordinates to be accessed.

NumPy ndarrays support vectorization, the process of remov-
ing unnecessary indexing and loops, using standard mathematical
notation. Typically, one must use loops to operate on a Python list
structure. For example, the addition of two vectorsx andy could
be written as follows:

z = [None] * len (x)
for i , (a , b) in enumerate(zip (x , y)):

z[i] = a + b

The above operation can be rewritten in vectorized form using
NumPy ndarrays in a single line:z = x + y.

Another code-simpli�cation concept supported by NumPy is
broadcasting. NumPy can treat arrays of di�erent shapes together,
implicitly applying element-wise operations on their elements. To
bring up another example, adding a scalar value to a Python list
can be written in the following manner:

y = [None] * len (x)
for i , a in enumerate(x):

y[i] = a + c # c is a scalar value

With NumPy, the operation is simpli�ed again to a single line:
z = x + c. Broadcasting doesn't apply only in operations between
arrays and scalars, but also among arrays of di�erent shapes, as
long as the smaller array can be �broadcasted� to the larger one's
shape in an unambiguous way.

The NumPy ndarray class also contains methods that operate
on the underlying data. Such routines include transposition and
reductions or aggregations, e.g.,sum, min, andargmax, to name a
few. These routines are further enhanced with keyword arguments
that modify their behavior and range of application. For example,
reductions have anaxisargument, which de�nes the dimensions
where the reduction operator will be applied.

2.2 NumPy routines
Arrays can be allocated with unde�ned values or �lled with zeros,
ones, and any other constant. They can be �reshaped�, i.e., have their
shape adjusted while retaining their original total size and data.
NumPy also provides methods for splitting an array or concatenat-
ing multiple arrays to a single one. Moreover, it implements all the
standard Python unary and binary operations and the mathematical
functions de�ned in the standard Pythonmathmodule.

NumPy has sub-modules that implement linear algebra, Discrete
Fourier Transformation, random number generation, and polyno-
mial �tting, among others. For example, the linear algebra sub-
module implements matrix and vector products (e.g., inner, outer,

NPBench: A Benchmarking Suite for High-Performance NumPy ICS '21, June 14�17, 2021, Virtual Event, USA

and tensor dot product), decompositions (e.g., Cholesky and QR
decompositions), and norms.

2.3 Memory Model and Interoperability
What enables �exibility and performance in NumPy is its memory
model. Native Python objects, such as lists, are composed of linked
lists and trees that must be traversed with multiple pointer indirec-
tions, prioritizing interpreter convenience over memory locality.
The �xed-size NumPy arrays, on the other hand, are represented as
contiguous bu�ers, which can be allocated by NumPy itself or other
allocators (owing to their__array_interface__ standard). This
enables high-performance behavior � transpositions, for example,
are not directly evaluated by default but simply swap the memory
order. The memory model and vectorization not only allows NumPy
to invoke external (e.g., BLAS) libraries directly but also promotes
runtime optimizations, such as lazy evaluation, which some NumPy
implementations use. Nearly all popular high-performance Python
libraries, especially in the deep learning domain, followed suit and
adopted similar memory models.

Interoperability goes beyond BLAS libraries. Due to the contigu-
ous bu�ers and array interface standards, many libraries, including
pre-compiled libraries and custom-written C/C++ extensions, could
directly use NumPy bu�ers as inputs/outputs. The aforementioned
model, combined with the simple, MATLAB-esque syntax, led to the
wide adoption of NumPy by scienti�c computing library developers
and users as one.

3 PRINCIPLES OF NPBENCH
A primary design goal of NPBench is to be representative of the
current and potential future use of Python in HPC. To that end, we
select micro-apps from a wide variety of scienti�c domains charac-
terized by standard computation and communication patterns [6].
We also write and adapt benchmarks utilizing the expressive syntax
of Python and the NumPy module. The above process leads to a
collection of samples emulating thepythonic(or numpythonic) code
style that domain scientists use in Python HPC applications.

3.1 Scienti�c Domains
We provide an exhaustive list of the NPBench code samples, sorted
by their scienti�c domain. We also provide a short description for
each sample.

3.1.1 Chemistry.We include two code samples from PyFAI [28],
a Python library implementing azimuthal integration. The two
samples areazimnaivandazimhist, with the latter being a �code-
reduction� of the former, down to two calls to the NumPy built-in
methodhistogram. We also adapt the Polybench [38] implementa-
tions of the Nussinov algorithm (nussinov), which predicts nucleic
acid structures, and the multiresolution analysis kerneldoitgen.

3.1.2 Digital Signal Processing.In this domain, we include a code
sample implementing the Stockham FFT algorithm (stham�t) [12],
a variation of the Cooley�Tukey algorithm allowing for greater
utilization of SIMD architectures. Furthermore, we implement the
dericheedge detector from Polybench [38], and we include a short
sample rescaling and clipping the values of an array to a speci�ed
interval (clipping) [47].

3.1.3 Graph and Sparse Algorithms.We adapt the Polybench [38]
implementation of the Floyd-Warshall shortest path algorithm
(�oydwar). We also implement sparse matrix-vector multiplica-
tion (spmv), which is used in GraphBLAS variants of breadth-�rst
search.

3.1.4 Machine Learning.We include implementations of the ba-
sic deep learning operators 2D-convolution and softmax (conv2d
and softmax). Furthermore, we provide implementations of a 3-
layer Multilayer Perceptron (MLP), the LeNet-5 [31] Convolutional
Neural Network (CNN), and the bottleneck residual block in ResNet-
50 [24] CNN. Both CNNs operate in inference mode. The corre-
sponding samples aremlp, lenet, andresnet. Furthermore, the ker-
nelscorrelatandcovarianare adapted from Polybench [38]. They
represent the correlation and covariance statistical techniques used
to compare di�erent populations of data.

3.1.5 Physics.We adapt two code samples,cavt�ow andchan�ow,
from CFD Python [9], a Jupyter-notebook tutorial for the Navier-
Stokes equations using Python and NumPy. The micro-apps solve
the cavity and channel �ow equations in two dimensions. We adapt
an N-Body simulation program (nbody) of star orbits according to
Newton's Law of Gravity [34]. We adapt two samples,conintegand
sselfengfrom the OMEN quantum transport simulator [48, 53]. The
two samples represent computation patterns that appear in the sim-
ulation of nano-devices' thermal characteristics. We also adapt the
stencilsjacobi1d, jacobi2d, heat3d, andfdtd_2dfrom Polybench [38].

3.1.6 Linear Algebra.We implement a variety of linear algebra
kernels. Most of them are adapted from Polybench [38] and can be
classi�ed into two groups:

(1) BLAS routines:gemm, gemver, gesummv, symm, syr2k, syrk,
andtrmm.

(2) Composite dense linear algebra kernels: Two and three ma-
trix multiplications (2mm, 3mm),�) �G (atax), matrix-vector
product and transpose (mvt), and trace computation (npgo-
fast) [3].

3.1.7 Solvers and Matrix Decomposition.We include several solvers
in the benchmark suite: Gauss-Seidel PDE solver (seidel2d), Toeplitz
and triangular system solvers (durbin, trisolv), Alternating Direc-
tion Implicit solver (adi), and a kernel from Biconjugate Gradient
Stabilized method (bicg), all adapted from Polybench [38]. Addi-
tionally, we adapt the Gram-Schmidt orthonormalization process
(gramschm), LU (with and without pivoting), and Cholesky decom-
position (vectorized and non-vectorized).

3.1.8 Weather Prediction and Climate Models.We include two
micro-apps,vadv and hdi� , both adapted from the test suite of
GT4Py [50]. The former represents vertical advection and the latter
horizontal di�usion, both from the COSMO dynamical core [8, 14].

3.1.9 Other Domains and Basic Kernels.We further provide sev-
eral code samples that do not belong to a major HPC scienti�c
domain but exhibit interesting computation patterns or Python and
NumPy syntax. We include two di�erent implementations of the
escape-time algorithm for generating Mandelbrot sets (mandel1
andmandel2)[43]. We also adapt the CRC-16-CCITT algorithm
(crc16) for cyclic redundancy check (CRC) [36].

ICS '21, June 14�17, 2021, Virtual Event, USA Ziogas et al.

3.1.10 Relation to Berkeley Parallel Dwarfs.Research in HPC and
Parallel Computing, in general, has led to the identi�cation of sev-
eral computational and communication patterns [6] that are preva-
lent in scienti�c applications. With NPBench, we focus on those
motifs that are amenable to array programming and, therefore,
map naturally to NumPy syntax and operations. By adapting sam-
ples that cover an extensive range of those motifs, we provide a
platform for exploring the expressibility of Python and NumPy,
together with their performance potential. We cover dense linear
algebra (BLAS and other linear algebra kernels and solvers), spectral
(stham�t) and N-Body (nbody) methods, structured grids (stencils,
weather and CFD micro-apps), Monte-Carlo and other embarass-
ingly parallel computations (npgofast), combinational logic (crc16),
and dynamic programming (�oydwar, nussinov). NPBench does not
cover sparse linear algebra, apart fromspmv, an implementation of
sparse matrix-vector multiplication. The reason is that NumPy by
itself does not provide support for sparse structures. SciPy [51], a
module complementary to NumPy for scienti�c computing, does
so but is out of the scope of this work. However, it can provide the
basis for a future extension of NPBench.

3.2 NumPy Coverage
NPBench includes sample codes gathered from various sources of
NumPy programming. Most are used as-is with minor modi�ca-
tions to facilitate benchmarking. For example, we convert global
variables to method arguments and enforce consistent data types.
To demonstrate the breadth of the feature-set covered in NPBench,
we provide code samples below and discuss the Python language
and relevant NumPy features.

3.2.1 Simple example codes.The clippingsample is taken from
the Cython tutorial for NumPy users [47]. The method comprises
simple array-scalar operations and a call to the NumPy built-in
methodclip , which clips (limits) the input array to a speci�ed
interval:

def cl ipping (array_1 , array_2 , a , b , c):
return (np.clip (array_1 , 2, 10) * a +

array_2 * b + c)

Theresnetsample consists of several methods, including the follow-
ing implementation of the batch normalization operator. It consists
of calls to the NumPy reductions for computing the mean and stan-
dard deviation of data. These calls utilize theaxisandkeepdims
keyword arguments, which de�ne the reduction dimensions and
the shape of the output.

def batchnorm2d (x , eps =1e -5):
mean =np.mean(x , axis =0, keepdims= True)
std = np.std (x , axis =0, keepdims= True)
return (x - mean) / np.sqrt (std + eps)

3.2.2 Adaptation of Polybench.Polybench is a collection of polyhe-
dral algorithms, such as linear algebra kernels and solvers, written
in C. To adapt its kernels, we �rst perform a straightforward transla-
tion of the loops and per-element array accesses to their equivalent
Python syntax. As an example, the Cholesky decomposition is writ-
ten as:

def cholesky (A):
for i in range (A.shape [0]):

for j in range (i):
for k in range (j):

A[i , j] -= A[i , k] * A[j , k]
A[i , j] /= A[j , j]

for k in range (i):
A[i , i] -= A[i , k] * A[i , k]

A[i , i] = np.sqrt (A[i , i])

However, the low-level code style used above misses an essential
bene�t of NumPy; the abstraction of array or matrix operations and
basic linear algebra kernels to a single line of code. To simulate a
NumPy user's code style, we attempt to minimize the code complex-
ity by vectorizingloops, i.e., rewriting them as array expressions.
For example, the twok-indexed loops incholeskycan be rewritten
as dot products:

def cholesky (A):
A[0 , 0] = np.sqrt (A[0 , 0])
for i in range (1 , A.shape [0]):

for j in range (i):
A[i , j] -= np.dot (A[i , : j] , A[j , : j])
A[i , j] /= A[j , j]

A[i , i] -= np.dot (A[i , : i] , A[i , : i])
A[i , i] = np.sqrt (A[i , i])

In some cases, we can go one step further and provide an alternate,
higher-level implementation, using NumPy built-in methods when-
ever appropriate. NumPy includes a routine for Cholesky decom-
position, which we can use to simplify the code further. Therefore,
an alternative implementation of the kernel that still returns the
same result as the original code written in C is the following:

def cholesky (A):
A [:] = (np. l inalg . cholesky (A) +

np. triu (A, k=1))

We note that NPBench includes codes similar in style to the two
latter Cholesky examples (cholesky, cholesky2).

3.2.3 Basic Indexing.NumPy ndarrays can be accessed with a va-
riety of syntaxes. Basic indexing (as de�ned in NumPy's documen-
tation [1]) includes slices of the formstart:stop:step , where any
of the three indices may be missing or even be a negative integer.
The following snippet fromcavt�ow showcases such indexing.

p[1: -1 , 1: -1] = (
((pn [1: -1 , 2:] + pn [1: -1 , : -2]) * dy **2 +

(pn [2: , 1: -1] + pn [: -2 , 1: -1]) * dx **2) /
(2 * (dx **2 + dy **2)) -
dx **2 * dy **2 / (2 * (dx **2 + dy **2)) *
b [1: -1 ,1: -1])

Another basic-indexing feature is the use ofnewaxis to add a dimen-
sion of length one to an array view. Python programmers can use
it to manipulate broadcasting in array expressions and the shape
of the output. We provide a code snippet from the 2D-convolution
benchmark:

output [: , i , j , :] = np. sum(
input [: , i : i + K, j : j + K, : , np.newaxis] *
weights [np.newaxis , : , : , :] ,

NPBench: A Benchmarking Suite for High-Performance NumPy ICS '21, June 14�17, 2021, Virtual Event, USA

axis =(1 , 2, 3) ,)

3.2.4 Advanced Indexing.NumPy ndarrays may also be accessed in
an unstructured way using indexing arrays. For example, a boolean
array of the same shape may indicate which elements of the data
array must be extracted. A use-case of this feature can be observed
in the mandelbrot samples (mandel1, mandel2):

for n in range (maxiter):
I = np. less (abs(Z), horizon)
N[I] = n
Z[I] = Z[I]**2 + C[I]

3.2.5 NumPy Routines and Sub-Modules.Many samples utilize
NumPy routines, including NumPy universal functions and meth-
ods from the NumPy sub-modules. For example, theconintegsample
uses the linear algebra sub-module for inverting a square matrix
and solving a linear system of equations:

for z in int_pts :
Tz = np.zeros ((NR , NR), dtype= np. complex128)
for n in range (slab_per_bc + 1):

zz = np.power (z , slab_per_bc / 2 - n)
Tz += zz * Ham[n]

if NR == NM:
X = np. l inalg . inv (Tz)

else :
X = np. l inalg . solve (Tz , Y)

4 MEASURING PRODUCTIVITY WITH
NPBENCH

After designing NPBench, we use it to test state-of-the-art NumPy-
accelerating compilers and frameworks. We opt to emphasize out-of-
the-box performance in this work. Therefore, we select frameworks
that can optimizepythoniccode without requiring a performance-
oriented rewrite from the user. For this reason, we exclude, for
example, Cython [10] which, although able to handle vectorized
NumPy code, will not o�er any speedup unless the code is rewritten
in a C-like manner in the extended Cython language. Furthermore,
we limit our exploration in this work to the reference Python inter-
preter, CPython [40].

The frameworks that we test are, ordered by date of introduction,
Pythran [22], Numba [30], CuPy [35], and DaCe [11]. We proceed
with an introduction for each one of them.

4.1 The Contenders
4.1.1 Pythran.Pythran [22] is a static compiler for a subset of
Python that includes NumPy ndarrays and routines. It converts
supported Python code to a Python Abstract Syntax Tree (AST)
based intermediate representation (IR), applies optimizations, and
outputs C++ code. The generated code is then compiled with, e.g.,
g++ to produce an optimized Python module for CPU execution in
the form of a shared library.

Pythran accepts as input a Python module with one or more
methods. The routines to be exported may optionally include an
annotation describing the data types of the arguments. This anno-
tation takes the form of a comment:
pythran export method_name(type1, type2, ...)

The annotated types can be Python built-in types, for example,int
andfloat , or NumPy types, such asint64 andfloat32 . It is possible
to de�ne arrays and their dimensions.

After parsing the input Python module, Pythran converts it to
an IR similar to regular Python AST. In this IR, it performs a variety
of code transformations that in turn allow the application of opti-
mizations in the generated C++ code. These optimizations include
using C++ expression templates to avoid redundant intermediate
arrays, loop vectorization to take advantage of vector instructions,
and loop parallelization with OpenMP.

4.1.2 Numba.Numba [30] is an LLVM-based Just-in-Time (JIT)
compiler for CPython [40], the Python language's reference im-
plementation. It speeds up Python methods that utilize NumPy
ndarrays and have been explicitly annotated by the user. It does
so by generating e�cient loops that access these arrays on a per-
element basis with comparable performance to compiled languages.
In addition, Numba supports single- and multi-core CPUs and o�ers
the capability to write GPU kernels manually.

Numba performs optimizations during runtime on the meth-
ods explicitly annotated by the user with the@numba.jit decorator.
Numba �rst receives as input the CPython bytecode of those meth-
ods and lowers them to the Numba intermediate representation (IR).
It then builds a dependency graph and attempts to infer the types
of all the values in the IR. If it succeeds for all of them, it proceeds
in nopythonmode (i.e., cannot call arbitrary Python), where it ap-
plies several high-level optimizations before lowering the methods
further to LLVM IR. In cases where type inference fails, Numba
falls back toobjectmode. Like NumPy, Numba considers all values
to be Python objects in this mode, and it relies on the Python C-API
and interpreter for code execution.

In nopythonmode, Numba improves execution in three main
ways, which complement each other. First, it removes unnecessary
indirection overheads when accessing NumPy ndarrays with an
index expression. Therefore, loops that perform operations among
ndarrays on a per-element basis execute as fast as the equivalent
array expressions. Second, it �nds array expressions that consist
of multiple ndarrays and Python built-in operators and rewrites
them in loop-form. When regular NumPy executes such array ex-
pressions, it generates temporary arrays to hold the intermediate
data. By converting these expressions to loops, Numba ensures that
the intermediate data can be stored in registers, reducing the data
movement. Lastly, Numba can perform loop fusion when applicable.

In objectmode, the optimization potential is reduced. However,
Numba can still split out loops (where type inference may succeed)
and apply �deferred loop specialization� on them. Numba automat-
ically transfers those loops to a separate method, which it attempts
to compile innopythonmode.

Numba supports single- and multi-core CPUs with OpenMP,
Intel TBB, and a simple built-in work-sharing task scheduler. Par-
allelization is enabled through the keyword argumentparallel of
the @numba.jit decorator. Furthermore, Numba has a custom loop
iterator,numba.prange , that allows the user to annotate loops whose
iterations can execute concurrently explicitly. Numba also supports
execution on Nvidia and AMD GPUs, but not automatically. Instead,
it exposes the parallel execution model of the hardware directly to
the user, facilitating the writing of GPU kernels.

ICS '21, June 14�17, 2021, Virtual Event, USA Ziogas et al.

4.1.3 CuPy.CuPy [35] is an implementation of the NumPy mod-
ule for Nvidia/AMD GPUs based on CUDA (or HIP for AMD). It
performs on-the-�y kernel synthesis and uses the optimized CUDA
libraries whenever possible.

CuPy does not optimize NumPy code. Instead, it implements its
version of NumPy ndarray and NumPy methods for GPU execution.
The CuPy API is compatible with NumPy, and in most cases, it is
enough to change the module name fromnumpyto cupy. Further-
more, it also implements a subset of the SciPy methods. CuPy's API
also contains methods for transferring data between the host and
the GPU device.

CuPy synthesizes GPU kernels optimized for the exact shapes
and data types of the arguments during runtime. These kernels are
cached, and the synthesis overhead is amortized over subsequent
executions. Moreover, CuPy allows the user to de�ne their own
element-wise and reduction kernels.

CuPy accelerates execution using the optimized CUDA libraries;
cuBLAS, cuRAND, cuSOLVER, cuSPARSE, and NCCL. It can also
improve performance by fusing kernels, according to user de�ni-
tion. Other optimizations include a custom memory allocator and a
memory pool, which speed up and reduce (respectively) memory
allocations and deallocations.

4.1.4 DaCe.DaCe [11] is a data-centric parallel programming
framework. It accepts programs written in one of the supported
front-end programming languages, including Python with NumPy
ndarray operations. DaCe converts these programs into Stateful
DataFlow multiGraphs (SDFGs), a data�ow-based IR. Subsequently,
it optimizes the IR with graph transformations that are applied ei-
ther automatically or with user-driven intervention. The optimized
IR is then translated to one of the supported back-end programming
languages and subsequently compiled into a shared library. DaCe
supports this way single- and multi-core CPUs, Nvidia and AMD
GPUs, as well as Intel and Xilinx FPGAs.

DaCe optimizes Python programs on a per-function basis, in
a similar manner to Numba. The user must explicitly annotate
Python methods with the@dace. programdecorator. Furthermore,
the method arguments must be type annotated using custom DaCe
types that are wrappers around equivalent NumPy data types. Argu-
ments that are NumPy ndarrays must also have their shape de�ned,
either symbolically or with integer constants.return statements can
have their type automatically inferred and do not need to be type
annotated. Moreover, DaCe o�ers a parallel loop iterator,dace. map,
which explicitly de�nes a parallel for-loop in Python code.

DaCe includes an extensive library of graph transformations
that can be utilized to optimize the IR of a Python program. These
transformations include tiling, loop (dace. map) fusion, vectorization,
temporary storage for storing intermediate results in registers and
caches, and elimination of redundant data transfers. The transfor-
mations can be applied either automatically or manually by the user.
This can be achieved by environment variables, programmatically
through the Python code, or interactively.

After optimizing the IR, DaCe generates code for the supported
architectures; in C/C++ for CPUs, CUDA for Nvidia GPUs, and HIP
for AMD GPUs. In addition, FPGAs are supported with High-Level
Synthesis (HLS), with OpenCL for Intel FPGAs and C++ for Xilinx.

4.2 Other frameworks
Apart from those mentioned above, many other compilers, frame-
works, and runtimes accelerate Python and NumPy code. PyPy [42]
is an alternative Python interpreter which can speed up Python
code via JIT compilation. Dask [16] allows Python programs that
use NumPy or CuPy ndarrays to execute in multi-node machines.
We also make a special note of the Cython [10] compiler below.

Cython is a compiler for Python but also an extended program-
ming language between C and Python. It converts code written in a
mix of Python and the Cython language into C. The user may then
employ any C/C++ compiler to generate a shared library and import
it in their Python code as a module. Cython provides signi�cant
speedups over regular Python code while supporting operations
among NumPy ndarrays. However, the latter operations will not
run faster than the execution with regular NumPy unless the user
rewrites them with loops and per-element accesses. Therefore, any
meaningful comparison of Cython against the other frameworks
would require extensive rewriting of the benchmark samples and
is out of the scope of this work.

4.3 Measuring framework-speci�c code
adaptations

As part of NPBench, we provide a Python program for each of
the samples described in Section 3.1. The user can execute these
programs through a Python interpreter with NumPy. To accelerate
program execution, we provide alternative implementations tai-
lored to each of the frameworks introduced in Section 4.1. These
code adaptations may di�er from the reference NumPy program
for two reasons; framework-speci�c annotations and rewriting of
unsupported NumPy features.

4.3.1 Framework-specific annotations.Frameworks may require
minimal changes, such as importing a module, adding special deco-
rators to the Python methods, or explicitly annotating argument
data types. We describe such framework-speci�c adaptations and
their use in NPBench in detail below.

Pythran parses Python �les and generates templated C++ code
for the included methods, supporting arguments of di�erent data
types and sizes. To avoid unnecessary overheads due to the tem-
plates, the user may optionally place constraints and provide type
hints to the Pythran compiler. These take the form of a comment
beginning with the string#pythran :

pythran export conv2d (float32 [: ,: ,: ,:] ,
f loat32 [: ,: ,: ,:])
def conv2d (input , weights):

In the above code, we hint to the Pythran compiler that the method's
arguments are 4-dimensional single-precision �oating-point arrays.

To execute a Python function with Numba, we annotate it with
the @numba.jit decorator. The decorator has several keyword argu-
ments that may in�uence performance:

import numba as nb
@nb. jit (nopython= True , paral lel = False ,

fastmath= True)
def conv2d_nopython (input , weights):

NPBench: A Benchmarking Suite for High-Performance NumPy ICS '21, June 14�17, 2021, Virtual Event, USA

Thenopython argument allows selecting betweenobjectandnopy-
thonmode of execution. In cases where the original code cannot be
executed as-is innopythonmode, we also test the performance in
objectmode:

@nb. jit (nopython= False , forceobj= True ,
paral lel = False , fastmath= True)

def conv2d_object (input , weights):

The fastmath argument enables the LLVM fast-math �ags. We al-
ways set this to true. Theparallel argument enables automatic
parallelization of operations. We test withparallel enabled and
disabled. Furthermore, whenparallel is enabled, it is possible to
annotate for-loops (Python ranges) as parallelizable explicitly, by
using thenumba.prange iterator. When the original code contains
Python ranges (for-loops) that can be executed in parallel, we also
test Numba with a version usingnumba.prange iterators:

@nb. jit (nopython= True , paral lel = True ,
fastmath= True)

def conv2d_nopython_prange (input , weights):
for i in nb .prange (H_out):

for j in nb .prange (W_out):

CuPy provides a NumPy-compatible interface. For example, the
hyberbolic tangent function, equivalent tonumpy.tanh , iscupy.tanh .
To minimize the number of required code changes, we rewrite the
NumPy import statement asimport cupy as np.

DaCe only compiles annotated@dace. programfunctions to shared
libraries. Furthermore, DaCe requires the function arguments to be
type annotated, including their shapes, which must be either inte-
ger constants or symbols. DaCe performs symbolic computations
using SymPy [32], a Python library for symbolic mathematics:

import dace as dc
C_in , C_out , H, K, N, W = (

dc. symbol (s , dc. int64) for s in (
' C_in' , ' C_out' , ' H' , ' K' , ' N' , ' W'))

@dc. program
def conv2d (

input : dc. f loat32 [N, H, W, C_in] ,
weights : dc. f loat32 [K, K, C_in , C_out]):

4.3.2 Rewriting unsupported NumPy features.In general, none of
the frameworks support every single NumPy method or syntactic
element. Whenever we encounter such codes, we write customized
best-e�ort adaptations for each framework. With these adaptations,
we aim to change as little as possible, while preserving the �spirit�
of the original code. In this process, we utilize features supported
by the frameworks but at the same time try to not optimize the code
inadvertently. We demonstrate this approach using as an example
the following code snippet from the 2D-convolution sample:

output [: , i , j , :] = np. sum(
input [: , i : i + K, j : j + K, : , np.newaxis] *
weights [np.newaxis , : , : , :] ,
axis =(1 , 2, 3))

Numba cannot execute the above code as-is innopythonmode for
several reasons. A �rst issue is the lack of support for tuple of
integers as value for theaxis keyword. We overcome this problem

by expanding thesumreduction to three nested ones; one for each
of the three dimensions speci�ed in the tuple:

output [: , i , j , :] = np. sum(np. sum(np. sum(
input [: , i : i + K, j : j + K, : , np.newaxis] *
weights [np.newaxis , : , : , :] ,
axis =1) , axis =1) , axis =1)

Next, Numba does not supportnewaxis indexing (Section 3.2.3). We
generate array views of the same shape as the original code using
the NumPyreshape method instead:

output [: , i , j , :] = np. sum(np. sum(np. sum(
np. reshape (input [: , i : i + K, j : j + K, :] ,

(N, K, K, C_in , 1)) *
np. reshape (weights , (1 , K, K, C_in , C_out)) ,
axis =1) , axis =1) , axis =1)

Finally, Numba cannot reshapeinput [:, i:i + K, j:j + K, :] be-
cause it is not contiguous in memory. We resolve this problem by
forcing a copy of the above slice to a contiguous array:

inp = input [: , i : i + K, j : j + K, :]. copy ()
output [: , i , j , :] = np. sum(np. sum(np. sum(

np. reshape (inp , (N, K, K, C_in , 1)) *
np. reshape (weights , (1 , K, K, C_in , C_out)) ,
axis =1) , axis =1) , axis =1)

5 EVALUATING WITH NPBENCH
5.1 Code adaptation as productivity metric
We evaluate the NumPy coverage provided by the frameworks
by extracting code-line metrics from the NPBench samples after
adapting them according to Section 4.3. Our intention is to provide
measurements of NumPy �compatiblity� and total e�ort required.
To that end, we use two metrics;total number of linesand code
coveragerelative to the original code.

For the �rst metric, we count the total number of linesCfor
each sample and framework using SLOCcount [52]. To make a
distinction between the frameworks, we use subscripts. For exam-
ple,C=? is the number of lines for the original NumPy code, while
C2? is the total length of the CuPy adaptation. We use the Python
Standard's (PEP8) 80 characters per line limitation [18] and count
all code-lines, including import statements, decorators, and other
framework-speci�c syntax. We note that SLOCcount ignores com-
ments. However, for Pythran, we add the comment-lines that we
use for type annotation.

For the second metric, we �rst count the total number of lines
C=? in the original NumPy code. Then, we count how many of
those lines; exist unmodi�ed in theadapted code. We de�necode
coverageas the ratio ;

C=?
. For example, the reference NumPy code

for the �oydwar benchmark is the following:

import numpy as np
def kernel (path):

for k in range (path . shape [0]):
path [:] = np.minimum(

path [:] , np.add .outer (path [: , k] ,
path [k , :]))

ICS '21, June 14�17, 2021, Virtual Event, USA Ziogas et al.

The code is actually 4 lines long in the Python �le (for presentation
reasons, it is spread here over more lines). Therefore,C=? is equal to
4. To produce an adaptation for Numba, we �rst add two lines, one
to import the module and another to annotate the method with the
@numba.jit decorator. Numba cannot handle the call toadd.outer
in nopythonmode. We remove the o�ending line and substitute it
with two equivalent lines supported by Numba:

import numpy as np
import numba as nb
@nb. jit (nopython= True , paral lel = False ,

fastmath= True)
def nopython_mode (path):

for k in range (path . shape [0]):
for i in range (path . shape [0]):

path [i , :] = np.minimum(path [i , :] ,
path [i , k] + path [k , :])

C=D<10 is 7 lines long in the benchmark �le. If we compare the two
implementations, we see that they have 3 lines in common; the
import statement for NumPy, the method signature, and the outer
loop using the: index. In other words,; is equal to 3 and the code
coverage is ;

C=?
= 75%.

In Fig. 2 (best viewed in color and pdf zoom), we present the
results of the NumPy coverage evaluation. Each row represents a
benchmark, while each column corresponds to one of the frame-
works. We plot in the rightmost column the code length (numbers
of lines) for each benchmark written in NumPy. The other columns
represent the frameworks annotated below them. The numbers
in the cells are equal to the di�erenceC2C� C=?, whereC2Cis the
total number of lines for each of the contenders. Furthermore, each
cell is color-coded to represent code coverage. It ranges from dark
green (100%) to dark red (0%). Cells annotated with the �unsup-
ported� label correspond to cases where it is infeasible to adapt the
benchmark without violating its main purpose.

We discuss interesting observations based on Fig. 2. About half
of the Pythran adaptations have one additional line compared with
the original NumPy code, and they exhibit full (100%) coverage.
These adaptations are identical to the reference benchmarks, apart
from the Pythran-speci�c comment line that provides type anno-
tations. In a similar manner, half of the Numba programs have
two additional lines. These correspond to the import statement
import numba, and the@numba.jit decorator used to annotate the
Python methods. The CuPy samples exhibit the inverse behavior.
Almost all of them have exactly the same code length as the refer-
ence NumPy codes. However, the corresponding cells are colored
in various shades of green. This is because all CuPy adaptations
edit at least a single line of the original code; they alter the import
statement toimport cupy as np.

We further elaborate on a couple of edge cases. The Numba
adaptation of theazimhistbenchmark contains 33 lines, compared
with just �ve lines of reference code; almost seven times as long.
However, the code coverage appears to be high. The original sample
comprises the following �ve lines:

import numpy as np
def azimint_hist (data , radius ,npt):

histu = np. histogram (radius ,npt)[0]
histw = np. histogram (radius ,npt ,weights=data)[0]

Figure 2: Code adaptation metrics.

return histw / histu

Although Numba supports the use of the NumPy routinehistogram
in nopythonmode, it does not accept theweights keyword argument.
Therefore, we adapt the code by introducing a custom weighted-
histogram implementation [5], which is 28 lines long. However, out
of the �ve original lines of code, four of them remain in the adapted
version as-is. Only the secondnumpy.histogram call is substituted
by an invocation of the custom histogram method. For this reason,
the coverage is 80%.

In resnet, a variablex is rede�ned multiple times as follows:

x = batchnorm2d (padded)

	Abstract
	1 Introduction
	2 NumPy
	2.1 The NumPy ndarray
	2.2 NumPy routines
	2.3 Memory Model and Interoperability

	3 Principles of NPBench
	3.1 Scientific Domains
	3.2 NumPy Coverage

	4 Measuring Productivity with NPBench
	4.1 The Contenders
	4.2 Other frameworks
	4.3 Measuring framework-specific code adaptations

	5 Evaluating with NPBench
	5.1 Code adaptation as productivity metric
	5.2 Performance
	5.3 Using and Extending NPBench

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References
	A Benchmark Details

