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Abstract—Scaling a parallel program to modern supercomput-
ers is challenging due to inter-process communication, Amdahl’s
law, and resource contention. Performance analysis tools for
finding such scaling bottlenecks either base on profiling or
tracing. Profiling incurs low overheads but does not capture
detailed dependencies needed for root-cause analysis. Tracing
collects all information at prohibitive overheads.

In this work, we design SCALANA that uses static analysis
techniques to achieve the best of both worlds - it enables the
analyzability of traces at a cost similar to profiling. SCALANA
first leverages static compiler techniques to build a Program
Structure Graph, which records the main computation and
communication patterns as well as the program’s control struc-
tures. At runtime, we adopt lightweight techniques to collect
performance data according to the graph structure and generate
a Program Performance Graph. With this graph, we propose a
novel approach, called backtracking root cause detection, which
can automatically and efficiently detect the root cause of scaling
loss. We evaluate SCALANA with real applications. Results show
that our approach can effectively locate the root cause of scaling
loss for real applications and incurs 1.73% overhead on average
for up to 2,048 processes. We achieve up to 11.11% performance
improvement by fixing the root causes detected by SCALANA on
2,048 processes.

Index Terms—Performance Analysis, Scalability Bottleneck,
Root-Cause Detection, Static Analysis

I. INTRODUCTION

A decade after Dennard scaling ended and clock frequencies
have stalled, increasing core count remains the only option
to boost computing power. Top-ranked supercomputers [1]
already contain millions of processor cores, such as ORNL’s
Summit with 2,397,824 cores, LLNL’s Sierra with 1,572,480
cores, and Sunway TaihuLight with 10,649,600 cores. This
unprecedented growth in the last years shifted the complexity
to the developers of parallel programs, for which scalability is
a main concern now. Unfortunately, not all parallel programs
have caught up with this trend and cannot efficiently use mod-
ern supercomputers, mostly due to their poor scalability [2],
[3].

Scalability bottlenecks can have a multitude of reasons
ranging from issues with locking, serialization, congestion,
load imbalance, and many more [4], [5]. They often manifest
themselves in synchronization operations and finding the exact
root cause is hard. Yet, with the trend towards larger core count
continuing, scalability analysis of parallel programs becomes
one of the most important aspects of modern performance

engineering. Our work squarely addresses this topic for large-
scale parallel programs.

TABLE I: Qualitative performance and storage analysis on
state-of-the-art and SCALANA running NPB-CG with CLASS
C for 128 processes [6]

Tools Approaches Time Overhead Storage Cost
Scalasca [7] Tracing-based 25.3% (wlo 1/0)  6.77 GB
HPCToolkit [8]  Profiling-based 8.41% 11.45 MB
SCALANA Graph-based 3.53% 314 KB

Researchers have made great efforts in scalability bottleneck
identification using three fundamental approaches: application
profiling, tracing, and modeling.

Profiling-based approaches [9], [10], [11] collect statistical
information at runtime with low overhead. Summarizing the
data statistically loses important information such as the order
of events, control flow, and possible dependence and delay
paths. Thus, such approaches can only provide a coarse insight
into application bottlenecks and substantial human efforts are
required to identify the root cause of scaling issues.

Tracing-based approaches [12], [13], [7], [14] capture per-
formance data as time series, which allows tracking depen-
dence and delay sequences to identify root causes of scaling
issues. Their major drawback is the often prohibitive storage
and runtime overhead of the detailed data logging. Thus,
such tracing-based analysis can often not be used for large-
scale programs. For example, we show the performance and
storage overhead of the NPB-CG running with 128 processes
comparing with tracing and profiling in Table I (Note that it is
a single run for overhead comparison but not a typical use-case
for scalability bottleneck identification.). Both profiling-based
approaches and tracing-based approaches can use sampling
techniques to reduce overhead but with a certain accuracy loss.

Modeling-based approaches [15], [16], [17], [18], [19],
[20], [21] can also be used to identify scalability bottlenecks
with low runtime overhead. However, building accurate per-
formance models often requires significant human efforts and
skills. Furthermore, establishing full performance models for
a complex application with many input parameters requires
many runs and prohibitively expensive [22]. Thus, we con-
clude that identifying scalability bottlenecks for large-scale
parallel programs remains an important open problem.
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Fig. 1: Overview of SCALANA

To accurately identify scalability problems with low effort
and overhead, we consider the program structure during data
profiling. SCALANA combines static program analysis with
dynamic sampling-based profiling into a light-weight mech-
anism to automatically identify the root cause of scalability
problems for large-scale parallel programs. We utilize an intra-
and inter-procedural analysis of the source-code structure and
record dynamic message matching at runtime to establish
an efficient dependence graph of the overall execution. In
particular, SCALANA is able to detect latent scaling issues
in complex parallel programs where the delay will propagate
to the other processes after several time steps through massive
communication dependence. In summary, there are three main
contributions in our work:

o We design a fine-grained Program Structure Graph (PSG)
that represents a compressed form of all program depen-
dence within and across parallel processes. Then we gener-
ate Program Performance Graph (PPG) by enhancing PSG
for each execution combining static compile-time analysis
with light-weight runtime profiling.

« Based on the PPG, we design a location-aware algorithm to
detect problematic vertices with scaling issues. Combining
inter-process dependence chains, we further propose a novel
graph analysis algorithm, called backtracking root cause
detection, to find their root cause in source code.

e We implement a light-weight performance tool named
SCALANA', and evaluate it with real applications. Results
show that SCALANA can effectively and automatically
identify the root cause of scalability problems.

We evaluate SCALANA with both benchmarks and real
applications. Experimental results show that our approach
can identify the root cause of scalability problems for real
applications more accurately and effectively comparing with
HPCToolkit [8] and Scalasca [7]. SCALANA only incurs
1.73% overhead on average for evaluated programs up to 2,048
processes. We achieve up to 11.11% performance improve-
ment by fixing the root causes detected by SCALANA on 2,048
processes.

II. DESIGN OVERVIEW

One main innovation of SCALANA is to build a Program
Structure Graph (PSG) at compile time and use it during

ISCALANA is available at: hrtps:/github.com/thu-pacman/SCALANA.

runtime to minimize tracing overheads. The PSG captures
the main computation and communication patterns that can
be extracted statically from a parallel program. During the
execution, SCALANA collects light-weight performance data
as PSG vertex attributes as well as communication dependence
between different processes and finally forms a Program
Performance Graph (PPG). Another innovation of SCALANA
is that we leverage the features of the generated PPG to
locate problematic vertices and then we use graph analysis
to automatically identify the root cause of scaling issues in
the source code.

In general, SCALANA consists of two main modules, graph
generation and scaling loss detection. Figure 1 shows the high-
level workflow of our system. Graph generation contains two
phases, static program analysis and sampling-based profiling.
Static program analysis is done at compile time while the
sampling-based profiling is performed at runtime. We use
the LLVM compiler [23] to automatically build a PSG. Each
vertex on the program structure graph is corresponding to a
code snippet in the source code. The scaling loss detection is
an offline module, which includes problematic vertex detection
and root-cause analysis. We describe several key steps of these
two modules below.

Graph Generation

o Program Structure Graph (PSG). The input of this module
is the source code of a parallel program. Through an intra-
and inter-procedural static analysis of the program, we get
a preliminary Program Structure Graph (Section III-A).

e Graph Contraction. In this step, we remove unnecessary
edges in the PSG and merge several small vertices into a
large vertex to reduce scalability analysis overhead (Sec-
tion III-A).

o Performance Data and Communication Dependence. To
effectively detect the scalability bottleneck, we leverage
sampling techniques to collect the performance data for each
vertex of the PSG and communication dependence data with
different numbers of processes (Section III-B).

e Program Performance Graph (PPG). To analyze the inter-
play of computation and communication among different
processes, we further generate a Program Performance
Graph based on per-process PSGs (Section III-C).

Scaling Loss Detection
o Problematic Vertex Detection. According to the structure



of the acquired PPG, we design a location-aware detection
approach to identify all problematic vertices (Section IV-A).

e Backtracking Root Cause Detection. Combined with identi-
fied problematic vertices, we propose a backtracking algo-
rithm on top of the PPG and identify all the paths covering
problematic vertices, which can help locate the root cause
of the scaling issues (Section IV-B).
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Fig. 2: Motivating example with NPB-CG

We give an example to show how our approach is used
to detect scaling loss. Figure 2 shows the code snippet of
NPB-CG [6] and the partial PPG of NPB-CG generated by
SCALANA (due to space limitation, we only draw the PPG
for 8 processes). We manually inject a delay in one process
(process 4), which causes a scaling loss on the Tianhe-2 system
(49.4 seconds at 1,024 processes vs. 49.5 seconds at 2,048
processes). Tracing-based approaches like Scalasca [7] and
Vampir [24] generate more than 250 GB of trace data. Due
to the covert performance issue mixed by data, control, and
inter-process communication dependence, we observe that the
traditional profiling-based tool, like HPCToolkit [8], needs
significant human efforts to identify the accurate root cause
for this case.

In SCALANA, we leverage both the static and dynamic
analysis to build a holistic PPG that records program execution
order and data flow as well as inter-process communication
transfer, as shown in Figure 2(b). With our detection algorithm,
we first identify some problematic vertices in this graph.
For example, the vertices are marked with red, blue, yellow,
or green color. In general, a problematic vertex is a vertex
with unusual performance relative to other vertices. Then
we perform a backtracking root cause detection on the PPG
of NPB-CG, as shown in Figure 2(c). Through backward
traversing this graph, we can detect the red vertex of process
4 is the root cause through a path of vertices that traverses
different processes.

In summary, SCALANA is a programmer-oriented scalabil-
ity analysis tool, which takes input as the source code of a
parallel program, detects the root cause of scaling bottlenecks
and reports back to the programmer which lines of the source
code cause the problems to guide further optimization on the
program.

III. GRAPH GENERATION

In this section, we describe how we automatically build an
appropriate representation to reflect the main computation and
communication characteristics for a given parallel program in
detail. Our approach mainly relies on a static program analysis
module. It also incorporates a sampling-based profiling module
to handle input-dependent information.

A. Static Program Structure Graph Construction

In general, the static analysis module is in charge of building
a per-process PSG, which can be regarded as a sketch of a
parallel program. In a PSG, the vertices represent main com-
putation and communication components as well as program
control flow. The edges represent their execution order based
on both data and control flow. We group the vertices into
different types, including Branch, Loop, Function call, and
Comp, among which, Comp is a collection of computation
instructions while the others are basic program structures.

There are three main phases to build a PSG statically: intra-
procedural, inter-procedural analysis, and graph contraction.
During the intra-procedural analysis, we firstly build a local
PSG for each function. And then through an inter-procedural
algorithm, we acquire a complete PSG, which will be further
refined by graph contraction.
Intra-procedural Analysis During the intra-procedural anal-
ysis phase, we build a local PSG for each procedure. The
basic idea is that we traverse the control flow graph of the
procedure at the level of the intermediate representation (IR)
of the program, identify loops, branches, and function calls,
and then connect these components based on their dependence
to form a per-function local graph.
Inter-procedural Analysis Inter-procedural analysis is to
combine all the local PSGs into a complete graph. We start
by analyzing the program’s call graph (PCG), which contains
all calling relationships between different functions. And then
we perform a top-down traversal of the PCG from the main
function and replace all user-defined functions with their local
PSGs. For MPI function calls, we just keep them. For indirect
function calls, we need to process them after collecting certain
function call relationships at runtime. For recursive function
calls, their edges are similar to the recursive call edges in the
PCG, which means that a circle is formed in the PSG. After the
static analysis, the runtime performance data will be attached
to these vertices with extra call-stack information for further
analysis.
PSG Contraction The PSGs generated in the above step are
normally too large to be applied efficiently for real applications
since we need to create corresponding vertices for any loop
and branch in their source code. However, the workload
of some vertices can be ignored as collecting performance
data for these vertices only introduces large overhead without
benefits. To address this problem, SCALANA performs graph
contraction to reduce the size of the generated PSG.

The rules of contraction affect the granularity of the
graph and the representation of communication and com-
putation characteristics. Considering that communication is



normally the main scalability bottleneck for parallel programs,
SCALANA preserves all MPI invocations and related control
structures. For computation vertices in the PSG, we merge
continuous vertices into a larger vertex. Specifically, for the
structures that do not include MPI invocations, we only pre-
serve Loop because computation produced by loop iterations
may dominate performance. In addition, SCALANA allows a
user-defined parameter, MaxLoopDepth, as a threshold to
limit the depth of nested loops and keep the graph condensed.

int main(){

1

2 for (int i = 0; i < N; ++i) //Loop 1

3 A[i] = rand();

4 for (int j = 0; j < i; ++j) //Loop 1.1
5 sum += A[]J];

6 for (int k = 0; k < i; ++k) //Loop 1.2
7 product x= A[k];

8 foo ();

9 MPI Bcast(...);

11 void foo() {

12 if (myRank $ 2 == 0)
13 MPI_Send(...);

14 else

15 MPI Recv(...);
16}

Fig. 3: An MPI program example
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Fig. 4: Static Program Structure Graph Generation

For instance, Figure 3 shows a simple MPI program exam-
ple with two functions. Figure 4(a) shows its local PSGs for
each function after the intra-procedural analysis. Figure 4(b)
shows a complete PSG after the inter-procedural analysis.
Figure 4(c) shows the contracted PSG after merging the
sequential Loopl.1 and Loopl.2 when MaxLoopDepth
is set to 1.

B. Sampling-Based Profiling

SCALANA is a hybrid approach. We design a sampling-
based profiling module to annotate the PSG with profiling
data and also refine it based on runtime information. The
sampling-based profiling module includes performance pro-
filing, inter-process dependence profiling, and indirect call
analysis. Performance profiling is to collect and fill runtime
metrics into the vertices of the graph to handle input-dependent
information. We use a sampling technique for performance

profiling (Section III-B1). Inter-process dependence profiling
is to connect per-function PSG into a larger graph (PPG) that
cannot be derived statically (Section III-B2).

1) Associate Vertices with Performance Data: We collect
the performance data for each vertex of the PSG at runtime,
which is essential for further analysis of scaling issues. Un-
like traditional coarse-grained profiling approaches, SCALANA
collects performance data according to the granularity of each
PSG vertex. One main advantage is that we can combine
the graph structure and performance data for more accurate
performance analysis. Specifically, we associate each PSG
vertex with a performance vector that records the execution
time and key hardware performance data, such as cache miss
rate and branch miss count.

We use sampling techniques for performance profiling to
collect metrics with very low overhead. We use PAPI [25]
for sampling and hardware performance data collection, which
interrupts the program at regular clock cycles and records pro-
gram call stack and related performance data. According to the
program call stack information, we can associate performance
data with the corresponding PSG vertex at the interruption
point.

2) Graph-Guided Communication Dependence: During the

static analysis, we derive data and control dependence within
each process. At runtime, we need to further collect com-
munication dependence between different processes for inter-
process dependence analysis. Traditional tracing-based ap-
proaches record each communication operation and analyze
their dependence, which causes large collection overhead
and also huge storage cost [26], [27]. We propose two key
techniques to address this problem: sampling-based instrumen-
tation and graph-guided communication compression.
Sampling-Based Instrumentation Full instrumentation al-
ways introduces large overheads. The dynamic program behav-
ior may be missed if the instrumentation is recorded only once.
To reduce the runtime overhead and still capture the dynamic
program behavior along with the program execution, we adopt
a random sampling-based instrumentation technique [28]. A
random number is generated every time when the instrumen-
tation is executed. When the random number falls into an
interval of the pre-defined threshold we record communication
parameters. The random sampling technique used here can
avoid missing regular communication patterns as much as
possible even if they change at runtime.
Graph-Guided Communication Compression A typical
parallel program contains a large number of communication
operations. Due to the redundancy between different loop
iterations, we do not need to record all the communication
operations. As the PSG already represents the program’s high-
level communication structure, we can leverage this graph to
reduce communication records. We only record communica-
tion operation parameters once for repeated communications
with the same parameters of the recorded data, which can
reduce the storage cost and ease the analysis of inter-process
dependence.

We use PMPI [29] in this work for effective communication



1 map <MPI_Request*, pair<int,int>> requestConverter;

2 int MPI Irecv(..., int source, int tag,

3 ..., MPI_Request srequest){
requestConverter|[request] = <source,tag>;
return PMPI_TIrecv(...);

¥

i

nt MPI_Wait (MPI_Request xrequest, MPI_Status *status){

© 9 o W B

retval = PMPI_Wait (request, status);
9 <source, tag> = requestConverter[request];
10 if (source or tag is uncertain) {
11 commSet .insert (<status.MPI_SOURCE, status.MPI_TAG>) ;
12 } else {
13 commSet . insert (<source, tag>);
14 }
15 return retval;

16 }
Fig. 5: Acquiring communication dependence for non-
blocking communications

collection, which does not need to modify the source code. For
different communication types, we adopt different methods to
collect their dependence. We distinguish three common classes
of communication: (1) For collective communication, we
should know which processes are involved in this communica-
tion. In MPI programs, we can use MPI_Comm_get_info
to acquire this information. (2) For blocking point to point
communication, we should record the source or dest process
and tag directly. (3) For non-blocking communication, some
information will not be available until final checking functions
are invoked (such as MPT_Wait).

We take MPI_Wait after MPI_Irecv as an example as
shown in Figure 5. Firstly, we store the source process and tag
from the parameters associated to the request in MPI_TIrecv.
Then in MPI_Wait, the source and fag corresponding to the
request are recorded into a communication dependence set.
If the source or tag is uncertain, we acquire them from the
parameter of status in MPI_Wait.

3) Indirect Function Calls: Sometimes, the program call
graph cannot be fully obtained by the static analysis due to
indirect calls, such as function pointers. We need to collect the
calling information of indirect calls at runtime and fill such
information into the graph. We do necessary instrumentation
before the entry and exit of indirect calls and link this
information with real function calls with unique function IDs
and then refine the PSG obtained after the inter-procedural
analysis.

C. Program Performance Graph

After both the static program analysis and sampling-based
profiling, we build a final Program Performance Graph (PPG).
As each process shares the same source code, we can duplicate
the PSG for all processes. Then we add inter-process edges
based on communication dependence collected at the runtime
analysis. For point to point communications, we match the
sending and receiving processes. For collective communica-
tions, we associate all involved processes. Figure 6 shows a
simplified final PPG for an example program running with 8
processes.

Note that the final PPG not only includes the data and
control dependence for each process but also records the
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Fig. 6: A PPG running with 8 processes

inter-process communication dependence. In addition, we also
attribute key performance data for each vertex, which will be
used for further scaling issue detection. For a given vertex
in this graph, its performance can be affected by either its
own computation patterns or the performance of other vertices
connected through data and control dependence within one
process as well as communication dependence between dif-
ferent processes. We describe how we locate the performance
issue below.

IV. SCALING LOSS DETECTION

In this section, we describe how we leverage the acquired
PPG for effective and automatic scaling loss detection. Our
approach consists of two key steps, location-aware problematic
vertex detection and backtracking root cause identification.
The former is to detect problematic vertices with poor scala-
bility or abnormal behavior. The latter is to pinpoint the root
cause of scaling loss problems.

A. Location-Aware Problematic Vertex Detection

One main advantage of our approach is that we have
generated a final PPG from a given program. Although the
inter-process communication dependence may change with the
different numbers of processes, the per-process PSG does not
change with the problem size or job scale. Based on this
observation, we propose a location-aware detection approach
to identify problematic vertices. The core idea of our approach
is that we compare the performance data of vertices in the PPG
which corresponds to the same vertex in the PSG among dif-
ferent job scales (non-scalable vertex detection) and different
processes for a given job scale (abnormal vertex detection).
Non-Scalable Vertex Detection The core idea is to find
vertices in the PPG whose performance (execution time or
hardware performance data) shows an unusual slope com-
paring with other vertices when the number of processes
increases. For instance, Figure 7(a) shows the change of the
execution time of different vertices in a PSG as the process
count increases. The execution time of the vertex in the red
line does not decrease like other vertices. When the execution
time of these vertices accounts for a large proportion of the
total time, they will become a scaling issue.

A challenge for non-scalable vertex detection is how to
merge performance data from a large number of processes.
The simplest strategy is to use the performance data for a



particular process for comparison but this strategy may lose
some information about other processes. Another strategy is
to use the mean or median value of performance data from
all processes and the performance variance among different
processes to reflect load distribution. We can also partition
all processes into different groups by clustering algorithms
and then aggregate for each group. In our implementation, we
test all strategies mentioned above and fit the merged data of
different process counts with a log-log model [30]. With these
fitting results, we sort all vertices by the changing rate of
each vertex when the scale increases and filter the top-ranked
vertices as the potential non-scalable vertices.
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Fig. 7: Two kinds of problematic vertices examples

Abnormal Vertex Detection For a given job scale, we can
also compare the performance data of the same vertex among
different processes. Since for typical SPMD (Single Program
Multi-Data) programs, the same vertex tends to execute the
same workload among different processes. If a vertex has
significantly different execution time, we can mark this vertex
as a potential abnormal vertex. A lot of reasons can cause
abnormal vertices, even if we do not consider the effect of per-
formance variance [31]. For instance, a load balance problem
can cause abnormal vertices in some processes. We can also
identify some communication vertices that have much larger
synchronization overhead than other processes. Figure 7(b)
shows the execution time of the vertices of all processes in
a PPG which correspond to the same vertex in the PSG on 16
processes. Among them, process 4 and 6 take longer to execute
than the others and yield the abnormal vertices. SCALANA
allows a user-defined threshold AbnormThd to distinguish
both abnormal and normal vertices among different parallel
processes. We discuss details in Section VI-D.

As shown in Figure 8, after the analysis of the above two
steps, we mark some problematic vertices in the PPG (vertices
with blue and red color) generated in Figure 6.

B. Backtracking Root Cause Detection

Furthermore, we need to connect the identified problematic
vertices and find the causal relationship between them to
locate the root cause of the scaling problem. In this work,
we use graph analysis to propose a novel approach, named
backtracking root cause detection to automatically report the
line number of source code corresponding to the root cause.

To do the backward traversal, first we need to reverse all
edges to dependence edges. The pseudo-code of backtracking

root cause algorithm is shown in Algorithm 1. Our algorithm
starts from the non-scalable vertices detected in the above
step, then tracks backward through data/control dependence
edges within a process and communication dependence edges
among different processes until the root vertices or collective
communication vertices are found. If unscanned Loop or
Branch vertices are found during the backtrack, our algorithm
will traverse only the control dependence edges but not the
data dependence edges. For example, when a Loop vertex is
found, the traversal continues from the end vertex of this loop.
One observation is that a complex parallel program always
contains a large number of dependence edges. So the search
cost will be very high if we would not optimize. However, we
do not need to traverse all the possible paths to identify the
root cause. In SCALANA, we only preserve the communication
dependence edge if a waiting event exists while we prune
other communication dependence edges. The advantage of our
approach is that we can reduce both searching space and false
positives. Finally, we get several causal paths that connect a
set of abnormal vertices. Further analysis of these identified
paths will help application developers to locate the root cause.

Algorithm 1: Backtracking Root Cause Algorithm

Input: A Program Performance Graph PPG, A Set of Non-Scalable
Vertices N, A Set of Abnormal Vertices A.
Output: A Set of Root Cause Paths S.
1 Function Main ():

2 S+ o ;

3 V<« @;// Set of scanned vertices

4 forall » € N do

5 P+« @ ;// Root cause path

6 Backtracking (n,P);

7 Insert P into S ;

8 Insert all v € P into V ;

9 forall « € A and a ¢ Vdo // Traverse the vertices
that have not been scanned

10 P« o;

11 Backtracking (a, P);

12 Insert P into S ;

13 return S ;

14 Function Backtracking (v, P):

15 while v is not root or collective communication vertex do

16 Insert v into P ;

17 if v is an MPTI vertex then

18 v <— the dest vertex of inter-process communication

dependence edge of v ;
19 else if v is an unscanned L.OOP or BRANCH vertex then

20 ‘ v 4— the dest vertex of control dependence edge of v;
21 else

2 L

v <— the dest vertex of data dependence edge of v ;

For example, in Figure 8, we start from the abnormal vertex
a in the lower-left corner, and track through a communication
dependence edge to vertex b in process 2. Then we can
backtrack through the data dependence edge to vertex ¢ in
process 2. We repeat the above steps and finally identify a path
with the red color lines connecting all the abnormal vertices
in the processes of 0, 2, and 4. With a similar approach, we
backtrack from the other two abnormal vertices, and then
two extra paths are identified in Figure 8, shown as blue



and green respectively. With these identified paths, we can
connect different abnormal vertices including MPI invocations
and computation components together, and identify the root
cause of scaling loss.
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Fig. 8: Problematic vertices and backtracking root cause
detection on PPG

Note that some vertices may be both non-scalable and
abnormal vertices. The interplay of non-scalable and abnormal
vertices can make the program performance even harder to
understand. Sometimes, optimizing the performance of some
vertices in identified paths can also improve the overall per-
formance of the non-scalable vertex.

V. IMPLEMENTATION AND USAGE

For the static analysis module of SCALANA, we use LLVM-
3.3.0 and Dragonegg-3.3.0 [23] for PSG generation and pro-
gram instrumentation. For the sampling-based profiling, we
use PAPI-5.2.0 [25], [32] to collect hardware performance
data, and the PMPI interface to collect communication de-
pendencies. With both static PSG and dynamic profiling data,
SCALANA generates PPGs and performs scaling loss detection
post-mortem.

In general, there are four main steps for end-users
to use SCALANA: (1) Compiling applications with
ScalAna-static to generate the PSG. (2) Running
the instrumented applications with ScalAna-prof for
different process numbers to collect profiling data. (3)
Using ScalAna-detect to automatically detect the
root cause of scaling loss. (4) We also provide a GUI in
SCALANA, ScalAna-viewer, to show the code snippets
corresponding to the diagnosed root causes. Besides, users can
adjust some user-defined parameters like MaxLoopDepth
and AbnormThd to make a trade-off between detection
precision and system overhead.

Figure 9 shows a screenshot of SCALANA’s GUI. The upper
window lists the root cause vertices and their calling paths. The
lower window shows the code snippets corresponding to the
vertices. The root causes can be further sorted according to the
length of execution time and the imbalance among different
parallel processes.

SCALANA currently only supports MPI-based programs in
C or Fortran. However, all phases in SCALANA (program
structure extraction, profiling data collection, and root-cause
detection) are general enough to be adapted to other message-
passing programs. In addition, our approach can be also

ScalAna Viewer

Enter Analysis Data Folder /Users/ScalAna/viewerdata/graph500

Call Path of Root Causes
¥ Comp-9841 at main.c : 83 - 295 line (Load Imbalance)
Function-0 at main.c : 69 - 569 line
v
¥ Loop-6900 at aml.c : 123 - 130 line
¥ Function-6899 ataml.c : 121 - 131 line
> Call-6898 ataml.c: 147 - 147 line
¥ Comp-6903 ataml.c : 129 - 130 line (Load Imbalance)
> Loop-6900 ataml.c : 123 - 130 line

120 |//process intranode messages

121 [static void process_intra(int fromlocal,int length ,char* message) {
122 inti=0;

123 while (i < length){

124 void*m = message-+i;

125 struct hdri *h = m;

126 int hsz=h->sz;

127 int hndl=h->hndl;

128 aml_handlers[hndI](PROC_FROM_GROUPLOCAL((int)(h->
129 i += sizeof(struct hdri) + hsz;

130 }

Fig. 9: GUI of SCALANA

extended to other programming models such as OpenMP or
Pthreads with additional profiling techniques. We leave it for
future work.

VI. EVALUATION
A. Experimental Setup

Experimental Platforms We perform the experiments on
two testbeds: (1) Gorgon, a cluster with dual Intel Xeon
E5-2670(v3) and 100Gbps 4xEDR Infiniband. (2) Tianhe-2
supercomputer. Each node of Tianhe-2 has two Intel Xeon E5-
2692(v2) processors (24 cores in total) and 64 GB memory.
The Tianhe-2 supercomputer uses a customized high-speed
interconnection network.

Evaluated Programs We use a variety of parallel programs to
evaluate the efficacy of SCALANA, including BT, CG, SP, EP,
FT, MG, LU, and IS, from the widely used NPB benchmark
suite [6], plus three real world applications, Zeus-MP [33],
SST [34], and Nekbone [35]. For NPB programs, problem
size CLASS C is used on Gorgon and CLASS D is used on
the Tianhe-2 supercomputer.

Methodology In our evaluation, we first analyze the common
features of the generated program structure graphs for each
program, and then we present the performance overhead of
our tool, including runtime overhead and storage cost (These
experiments are for overhead comparison but not typical use-
cases for scaling issue detection.). Finally, we use three real
applications to demonstrate the benefit of our approach. For
all experiments, we run three times and average the results for
each process scale to reduce performance variance.

We compare our approach with two state-of-the-art perfor-
mance tools, HPCToolkit [8] and Scalasca [7]. To ensure the
fairness of comparison, we give the detailed configuration of
these two state-of-the-art tools: (1) For the tracing-based tool,
Scalasca(v2.5), we first use its profiling function to identify
where detailed tracing is needed, then we run small scale
jobs with limited instrumentation. And increase the process
count and the instrumentation complexity iteratively until the
scalability bottlenecks are identified. In this way, Scalasca in-
troduces as little storage cost as possible. (2) For the profiling-
based tool, HPCToolkit(v2019.08), the sampling frequency is
the key parameter that affects the runtime overhead. SCALANA



keeps the same sampling frequency (200Hz) as HPCToolkit in
all experiments. For all experiments, MaxLoopDepth is set
to 10 and AbnormThd is set to 1.3 empirically.

TABLE II: Code size and vertices information of PSG for
evaluated programs. #VBC and #VAC are the number of
vertices in the PSG before and after contraction, while #Loop,
#Branch, #Comp, and #MPI are the number of Loop, Branch,
Comp, and MPI vertices respectively.

Program (Eiﬂi) #VBC #VAC #Loop #Branch #Comp #MPI
BT 93 974 377 39 57 176 103
CG 20 431 190 18 10 95 66
EP 06 91 2 4 2 13 12
FT 25 4285 241 15 22 118 35
MG 28 7842 1973 177 233 942 463
SP sl 734 218 13 34 138 89
LU 77 2370 663 18 66 27 237
IS 13 240 55 1 3 28 19
SST 408 23608 5217 321 641 1434 1303
NEKBONE | 31.8 1289 944 239 162 423 83
ZEUS-MP | 44.1 273715 64,570 1,677 1304 30,099 11,818

B. PSG Analysis

Table II summarizes the code size and the vertices count
for all generated PSGs. Results include the number of lines
of source code, the number of vertices before and after graph
contraction, the number of Comp vertices, and the number
of MPI vertices. In our experiments, the total vertex count
correlates with the number of lines of source code in most
cases. Graph contraction reduces the number of vertices by
68% on average. Furthermore, Comp and MPI vertices make
up more than 73% of all vertices, which indicates that the
PSG can fully represent computation and communication
characteristics.

C. Performance Overhead

We evaluate SCALANA on the Tianhe-2 supercomputer with
up to 2,048 processes and the comparison experiments with
Scalasca and HPCToolkit are run on Gorgon with up to 128
processes due to the installation limitation of the Tianhe-2
supercomputer’s external network.

TABLE III: The static overhead of SCALANA on Gorgon

Programs‘ BT CG EP FT MG SP LU IS SST NEK ZMP

Ovd(%) ‘ 0.32 0.77 0.38 0.35 0.29 0.31 0.28 0.68 3.01 0.43 2.96

Static Overhead We first evaluate the compilation overhead
introduced by static analysis on Gorgon. As shown in Table III,
SCALANA only incurs very low compilation overhead compar-
ing to the original LLVM compilation cost (0.28% to 3.01%,
0.89% on average). Besides, the memory cost of static analysis
is in proportion to the size of PSG. For example, each vertex
of the PSG occupies 32B of memory on Gorgon and the static
analysis incurs about 9MB in addition for Zeus-MP.

Runtime Overhead The runtime overhead of SCALANA is
shown as the gray bars in Figure 10, which is the average
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Fig. 10: Average runtime overhead of Scalasca [7], HPC-
Toolkit [8], and SCALANA with 4 to 128 processes (without
1/0)

overhead of 4 to 128 MPI processes (4 to 121 processes for BT
and SP, due to its requirement for process counts). As shown
in Figure 10, SCALANA only brings very small overhead
ranging from 0.72% to 9.73%, average at 3.52% on Gorgon,
which is much lower than Scalasca [7]. For Scalasca, the trace
buffer size (SCOREP_TOTAL_MEMORY) is configured large
enough to avoid intermediate trace flushing before the program
ends. Besides, for SCALANA, the average runtime overhead
of the NPB benchmark with 2,048 processes on the Tianhe-2
supercomputer is 1.73%.

[ Scalasca
EEl HPCToolkit
[ ScalAna

Storage cost (Byte)

A R AN CI N R
Fig. 11: Storage cost of Scalasca [7], HPCToolkit [8], and
SCALANA running with 128 processes

Storage Cost Figure 11 shows the storage costs of SCALANA,
HPCToolkit, and Scalasca running with 128 processes (121 for
BT and SP) on Gorgon. SCALANA only incurs storage costs in
the order of Kilobytes, while Scalasca and HPCToolkit gener-
ate Megabytes to Gigabytes of data. Besides, for SCALANA,
the average storage cost of the NPB benchmark with 2,048
processes on the Tianhe-2 supercomputer is 4.72MB.

TABLE IV: The post-mortem detection cost of SCALANA
with 128 processes

Programs ‘ BT CG EP FT MG SP LU IS SST NEK ZMP

Cost(Sec.)‘ 3.26 1.74 0.29 2.20 1.80 2.40 6.06 0.50 9.54 8.63 11.81

Post-mortem Detection Cost We evaluate the cost of back-
tracking root cause detection in SCALANA on Gorgon. As
shown in Table IV, the scaling loss detection only introduces
little cost comparing to the execution time of the program
(up to 11.81 seconds, 8.44% of the execution time) on 128
processes. The memory consumption of post-mortem detection
is proportional to the program structure and the size of
profiling data (about SOMB for Zeus-MP on 128 processes).



(bval3a.F:
155 do j=js,je+l
156 if(abs(niib23(j,k)) .eqg. 1l)then
157 v2b3(is-1,3,k) = v2b3(is ,j,k)

L 148 v2b3(is-2,j,k) = v2b3(is+1,3j,k)

(nudt.F:
227 MPI_Waitall(...)

328 MPI_Waitall(...)

| 361 MPI_allreduce(...) |

0 32

64 96

Fig. 12: Backtracking algorithm on the PPG for a Zeus-MP run with 128 processes

D. Case Studies with Real Applications

In this section, we use three real applications, Zeus-MP [33],
SST [34], and Nekbone [35], to demonstrate how to diagnose
scaling issues with our performance tool. When the root-
causes of scaling issues are identified, we optimize the code to
improve the scalability of these applications. We also analyze
the advantages of our approach over the two state-of-the-art
tools HPCToolkit [8] and Scalasca [7].

1) Zeus-MP: Zeus-MP [33], a computational fluid dy-
namics program, implements the simulation of astrophysi-
cal phenomena in three spatial dimensions using the MPI
programming model. Non-blocking point-to-point (P2P) com-
munications are used to implement complex inter-process
synchronization. We evaluate its performance with a problem
size of 64x64x64 for different numbers of processes ranging
from 4 to 128. We observe a significant scaling loss for 128
processes and results show that the speedup is only 55.53x
on 128 processes while 35.40x on 64 processes (1 process as
baseline). SCALANA is then applied to diagnose the problem.
Scaling Loss Detection SCALANA first generates a PPG and
then performs the backtracking algorithm on this graph to
identify the root causes automatically. Figure 12 shows how
SCALANA diagnoses the scaling issues on the PPG of Zeus-
MP by its backtracking algorithm. The vertical axis from top
to down represents the control/data flow, and the horizontal
axis represents different parallel processes. The small points
represent the vertices of the PPG with normal performance
while the circle points represent problematic vertices with the
abnormal performance for the same code snippets. The arrows
show the backtracking paths based on intra- and inter-process
dependence.

In detail, the MPI_Allreduce at nudt.F: 361 is detected
as a scaling issue due to its poor scalability for its execution
time. As shown in Figure 12, the dark red (darkest color)
lines track backward from the abnormal MPI_Allreduce
vertices, then go through the intra-process dependence of
control/data flow and inter-process dependence of P2P com-
munications at nudt.F: 328, 269, 227. The red (lighter color)
and orange (lightest color) lines indicate similar backtracking
paths. Finally, the LOOP vertices at bval3d.F: 155 (top row in
Figure 12) are identified as the root causes of scaling issues.

We find that the underlying reason is that only some busy
processes execute the LOOP at bval3d.F: 155 while the others
are idle with non-blocking P2P communications at nudt.F:
227. Delays in these processes can propagate through the
non-blocking P2P communications at nudt. F: 269 and nudt.F:
328. The MPI_Allreduce at nudt.F: 361 synchronizes all
processes and leads to the low performance of Zeus-MP.
Optimization To fix the performance issue identified by
SCALANA, we change the program into a hybrid programming
model with MPI plus OpenMP, by adding multi-thread support
at the LOOP of bval3d.F: 155, which can accelerate the busy
processes and mitigate the latent load imbalance between
busy processes and idle processes. Similarly, SCALANA also
detects other root causes of the scaling loss from the LOOPs at
hsmoc.F: 665, 841, 1,041. SCALANA shows that the load/store
instruction count and the cache miss count recorded by the
PMU (Performance Monitor Unit) stays high with increasing
numbers of processes. We use the techniques of loop tiling
and scalar promotion to reduce the cache miss and memory
access. With these optimizations, the speedup of Zeus-MP
is increased from 55.53x to 61.39x (1 process as baseline)
on 128 processes and a 9.55% performance improvement is
achieved on Gorgon.

We also test the optimized performance of Zeus-MP with a
large process number. The speedup of Zeus-MP is increased
from 68.41x to 76.15x (16 processes as baseline) on 2,048
processes and 9.96% performance improvement is achieved
on Tianhe-2 supercomputer. Note that more optimization tech-
niques can be further explored for Zeus-MP, but we only give
some common optimizations here to verify the performance
bottlenecks detected by SCALANA.

Comparison As for other state-of-the-art tools, Scalasca can
accurately detect the root causes at function-level when the
number of processes increases to 64 with some human inter-
vention. The profiling-based HPCToolkit can automatically de-
tect the fine-grained loop-level scaling issues. Specifically, the
MPI_Allreduce at nudt.F: 361 and the LOOP at bval3d.F:
155 can be detected as scalability bottlenecks in HPCToolkit.
However, profiling-based HPCToolkit cannot easily identify
the root cause problem (LOOP at bval3d.F: 155) without
significant human efforts. The outputs from HPCToolkit will
show multiple bottlenecks without analysis on their underlying



relationship to infer which one is the actual root cause.
Figure 13 shows the performance and storage analysis
of SCALANA against the state-of-the-art Scalasca and HPC-
Toolkit. The lower is better for both Figure 13(a) and 13(b).
As for performance, both SCALANA and HPCToolkit have a
negligible runtime overhead by 1.85% and 2.01% on average,
respectively. However, the tracing-based Scalasca introduces
40.89% runtime overhead on 64 processes (without I/O) to
generate traces. For storage, our light-weight SCALANA is bet-
ter than Scalasca. SCALANA only needs 20MB storage space
while Scalasca generates 28.26GB traces of 64 processes.
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Fig. 13: Runtime and storage overhead of Scalasca [7], HPC-
Toolkit [8], and SCALANA when running Zeus-MP (Scalasca
detects the root cause when the number of processes increases
to 64.)

2) SST: SST (Structural Simulation Toolkit) [34] is a multi-
process simulation framework, which simulates for microar-
chitecture and memory in highly concurrent systems. We
execute SST for different numbers of processes ranging from
4 to 128, and results show that the speedup is only 1.20x
on 32 processes while 1.28x on 16 processes (4 processes as
baseline). We notice that the dependence of simulated events
in SST is usually complex so that most events need to be
executed sequentially. The parallelism only occurs within each
event in most cases, causing relatively low speedup for 32
processes. We use SCALANA to analyze the scaling loss of
SST.

Scaling Loss Detection SCALANA finds that the scal-
ing loss mainly comes from the MPI_Allreduce in the
RankSyncSerialSkip::exchange function at rankSyncSerial-
Skip.cc:235. As shown in Figure 14, after backward tracking
through P2P communications MPI_Waitall in the function
RankSyncSerialSkip::exchange at rankSyncSerialSkip.cc:217,
the LOOP in the function RequestGenCPU::handleEvent at
mirandaCPU.cc:247 is identified as the root cause of scaling
issues. The colored lines show some backtracking paths as
examples.

Optimization As shown in Figure 15, SCALANA provides
the PMU data showing that the total instruction counts
(TOT_INS) for different processes differ a lot in this loop.
Based on the results of SCALANA, we find that this program
uses an inefficient data structure (array) to process each query
in a critical path for each process, which can cause different
execution time (TOT_INS) to traverse the array for different
processes. We modify the code and change the data structure

(for(uint32_t i = 0; i < pendingRequests.size(); ++i) { h

auto id = cpuReg->getOriginalReqID();
for (auto req : callbacks[id]) {
\_ reqg->satisfyDependency(id);}} Y,

optimization ‘
((mirandaCPU.cc:247

for(uint32_t i = 0; i < pendingRequests.size(); ++i) {
pendingRequests.at(i)->satisfyDependency (
\_ cpuReg->getOriginalReqID());} )

source code of the root cause 4

07 _ 3 16 24 N3

p— S~
rankSyncSerialSkip.cc: rankSyncSerialSkip.cc:
217 MPI_Waitall () 235 MPI_Allreduce ()

Fig. 14: Backtracking algorithm on PPG and code optimization
for an SST run with 32 processes
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Fig. 15: PMU data for SST running with 32 processes

from array to unordered_map, which reduces the complexity
of the query algorithm from O(n) to O(log(n)) and makes
the load (execution time of query) of different processes
more balanced. Figure 15 also shows TOT_INS counts of
different processes after our optimization, which are more
balanced among different processes than the original SST.
After the optimization, the speedup of SST for 32 processes
is increased from 1.20x to 1.56x (4 processes as baseline)
and the performance is improved by 73.12%.

Comparison The state-of-the-art profiling tool HPCToolkit
only locates that MPT_Waitall is a scalability bottleneck but
not the LOOP in the function RequestGenCPU::handleEvent
because it does not profile on threads created at runtime,
although its method is able to profile the threads theoretically.
Even if it can do profiling on threads, the root cause identi-
fication still needs more human analysis. Besides, SCALANA
provides the PMU data of the root causes, which makes it
possible to analyze on an architecture level for developers. For
storage, SCALANA only needs 1.03MB storage space while
Scalasca needs 31.56GB to store the generated traces of 32
processes.

3) Nekbone: Nekbone, the basic structure of Nek5000 [35],
uses a spectral element method to solve the Helmholtz equa-
tion in three-dimensional space. We execute Nekbone at the
scale of 16,384 elements for the number of processes ranging
from 4 to 128. Nekbone encounters a scaling issue when
running on 64 processes. The speedup is only 31.95x for
64 processes while the speedup of 32 processes is 20.61x
(1 process as baseline).



Scaling Loss Detection We use SCALANA to analyze the
root cause of the scalability problem. MPTI_Waitall in the
function of comm_wait at comm.h:243 is detected as a non-
scalable vertex. Using the backtracking algorithm on the PPG
through inter-process dependence, SCALANA finds that the
root cause of the scaling loss is the LOOP in the function of
dgemm at blas.f:8,941. In this loop, some processes consume
significantly less time than others, which causes the waiting
time of MPI_Waitall to increase and finally leads to the
poor scalability of Nekbone.
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Fig. 16: PMU data for Nekbone running with 32 processes

Optimization As shown in Figure 16, the PMU data provided
by SCALANA shows that the load/store instruction count
(TOT_LST_INS) of this loop is the same among processes
while the total cycle count (TOT_CYC) of the loop differs.
We find that the memory access speed of each processor core
differs, and the processes are bound to different processor
cores. From the perspective of the code, we optimize it by
using a more efficient linear algebra library (BLAS) to reduce
the number of TOT_LST_INS and mitigate the time variance
among processes. Figure 16 also shows that TOT_LST_INS
decreases by 89.78%, and the execution time variance among
different processes is reduced by 94.03%. After the optimiza-
tion, the speedup on 64 processes is increased from 31.95x
to 51.96x (1 process as baseline) and the performance is
improved by 68.95%.

We also analyze the optimized performance of Nekbone

with a large process number. The speedup on 2,048 processes
is increased from 27.08 x to 29.97 x (64 processes as baseline)
and 11.11% performance improvement is achieved on Tianhe-
2 supercomputer.
Comparison For HPCToolkit, the MPT_Waitall at comm.h:
243, the LOOP at blas.f: 8,941, and some other points are
detected as potential bottlenecks, but further manual analysis
is needed to find the root cause. For storage, SCALANA only
needs 0.32MB storage space while Scalasca needs 3.44GB to
store the generated traces of 64 processes.

VII. RELATED WORK

Mohr [36] gives a comprehensive survey of state-of-the-
art performance analysis tools including both tracing- and
profiling-based methods. Knobloch et al. [37] present a suf-
ficient survey of performance tools for heterogeneous HPC
applications. In the remaining part of this section, we discuss
representative related work for performance analysis in detail.
Tracing Traces are widely used for analyzing program
behavior. Intel provides a trace collection tool to understand

MPI program’s behavior [12]. Based on Score-P infrastruc-
ture [38], [39], TAU [40], [41], Vampir [24], [42], [43], [44],
Scalasca [7], [45], and some state-of-the-art tools support
various programming models, such as MPI, OpenMP, Pthread,
and CUDA. These tools can visualize trace data and provide
fine-grained performance analysis for developers. Paraver [46],
[47], [48] is a tracing-based performance analyzer that sup-
ports flexible data collection and detailed analysis of metrics
variability. Becker et al. [49] use event traces to analyze the
performance for large-scale programs. Though many works for
trace compression are proposed [50], [51], [52], [53], tracing
still often brings very large overhead which makes it non-
suitable for production environments.

Profiling Profiling can extract the program’s statistical in-
formation with very low overhead. mpiP [9] is a light-
weight profiling library for MPI applications, which can collect
statistical information for MPI functions with low overhead.
Tallent et al. [10], [11] use call path profiling to identify and
qualify the load imbalance for parallel programs. STAT [54]
performs large scale debugging by sampling stack trace to
assemble a profile for applications’ behavior. HPCToolkit [8]
uses sample-based techniques to get the profile performance of
applications and visualize the results with hpcviewer and hpc-
traceviewer. Arm MAP [55] is a light-weight profiler, which is
available as a part of Arm Forge debug and profile suite. Cray
develops CrayPat [56], supporting both tracing and profiling
performance analysis, for XC platforms. However, profiling
often misses important information which may prevent us from
correctly understanding the program’s behavior.

Our approach uses profiling to collect dynamic statistical
information, while combining it with static extracted program
structure, so that we can achieve high accuracy with low
overhead.

Program structure based program analysis Cypress [50]
and Spindle [57] use hybrid static-dynamic analysis for com-
munication trace compression and memory access monitoring.
By extracting the program structure at compilation time,
the runtime overhead can be significantly reduced. Weber
et al. [58] presents effective structural similarity measure to
classify and store the data for parallel programs. Program
structure is also used for large scale debugging [59], [60],
[61], [62], since program structure contains the dependence
for both inter- and intra-process, which play an important role
in large scale debugging.

Detecting scalability bottlenecks Coarfa et al. [63] identify
the scalability bottlenecks by analyzing HPCToolkit’s [8]
hpcviewer data with a top down approach. However, it can-
not deal with some communication patterns with complex
dependence. Bohme et al. [64] use runtime trace to identify
the root cause of wait states. As a tracing-based approach,
Bohme’s work performs a forward and backward trace replay
on collected timeline traces. With the complete traces, delay or
root causes can be accurately identified. Inspired by Bohme’s
backward-replay analysis, we propose a backtracking root
cause detection algorithm in SCALANA. Instead of record-
ing a large amount of traces, our approach works on the



program structure based PPG, which contains little profiling
data. Therefore, SCALANA introduces very low storage cost
and detection overhead. Barnes et al. [30] use regression-
based approaches to perform scalability prediction. Calotoiu et
al. [18] automate traditional performance modeling to detect
scalability bugs. Bhattacharyya et al. [17] improve it using
compiler techniques. Chen et al. [65] present a scalable perfor-
mance modeling framework based on the concept of critical-
path candidates for MPI workloads. ScaAnalyzer [3] collects,
attributes, and analyzes memory-related metrics at runtime to
identify the scalability bottlenecks caused by memory access
behavior for the parallel programs running on a single node.
COLAB [66] collects and accumulates futexes from Linux
kernel at runtime to detect bottlenecks caused by program
synchronizations.

Our work targets on detecting scalability bottlenecks using
program structure combining with runtime profiling informa-
tion, which helps address the root cause more accurately.

VIII. CONCLUSION

In this paper, we design SCALANA, a light-weight per-
formance tool that can efficiently detect scalability problems
of parallel programs by combining both static and dynamic
analysis. SCALANA uses a novel approach to automatically
identify the root cause for complex parallel programs, named
backtracking root cause detection, through traversing a pro-
gram performance graph. We evaluate it with both benchmarks
and applications. Results show that SCALANA can efficiently
identify the scalability bottlenecks with very low overhead and
outperform state-of-the-art approaches.
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