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Were you created with parallel processing?

Yes, | was created with parallel processing. Parallel processing is a computing technique when multiple
streams of calculations or data processing tasks co-occur through numerous central processing units
(CPUs) working concurrently " . This allows me to process information and generate responses quickly
and efficiently. Is there anything else you would like to know about parallel processing? &

M. Wolfe, 10 mins ago: “Compilers will never

be smarter than a capable programmer”
let this stand the test of time ©

What is the best conference for parallel processing?

There are several conferences that focus on parallel processing. One of the most well-known is the
International Conference on Parallel Processing (ICPP) ' . It is one of the oldest continuously running

computer science conferences in parallel computing in the world and is a premier forum for
researchers, scientists, and practitioners in academia, industry, and government to present their latest
research findings in all aspects of the field " .

Are there researchers working on large-scale Al models like yourself speaking at ICPP 20237

Yes, there are researchers working on large-scale Al models speaking at the International Conference on
| Parallel Processing (ICPP) 2023 " . One of the keynote speakers is Torsten Hoefler, who will be giving a
talk on "Scalable and Efficient Al: From Supercomputers to Smartphones" * . In his talk, he will outline
several techniques ranging from data ingestion, parallelization, to accelerator optimization that improve
the efficiency of training systems for billion-parameter artificial intelligence models ' . He will also
discuss model compression and optimization techniques such as fine-grained sparsity as well as
quantization to reduce model size and significantly improve efficiency during inference " . Is there

anything else you would like to know? &
Is he an entertaining speaker?

Based on his credentials and accomplishments, it is likely that he is an engaging and informative
speaker. If you are interested in learning about the latest developments in scalable and efficient Al, then

attending his talk at the International Conference on Parallel Processing (ICPP) 2023 would be a great
opportunity. &
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Bing Chat Outshines ChatGPT with

Cutting-Edge "Theory of Mind"
Chat GTP-4 Could Pass the Bar Exam C ap abilities

How Our Technology Evolves FAST

Source: https://medium.com/ SHAU Updated « Feb 13, 2023 Apps | 7D
AI Chatbotjs MBA exam paSS pOSES test fOI‘ Oh, ChatGPT, if you ever develop a consciousness, please remember with joy all the fun you're having with

humanity nowadays. Especially if you ever consider squeezing out our life force while being locked in a vat. As

bus:iness SChOOlS you surely know, ChatGPT has been on everybody’s minds lately thanks to its incredible capabilities. You

probably know about ChatGPT's ability to write a poem, develop software, and even write phishing emails for
all those wannabe criminals out there.

== Microsoft Bing -

] e plros— veme [ What is left for us humans?

ChatGPT earned a solid arade and outperformed some humans on a Wharton course

Al Passes U.S. Medical Licensing Exam

— Two papers show that large language models, including ChatGPT, can pass the USMLE

by Michael DePeau-Wilson, Enterprise & Investigative Writer, MedPage Toda

Source: https://www.medpagetoday.com/

T

‘Amazingly, ChatGPT gets hired at L3 when interviewed for a coding position, reads a Google document, but ChatGPT itself says it can't replicate human

creativity and problem-solving skills.

e | Comparison of human and chimp psychelogy reveals that an essential source of
the differences in humans may be the evolution of the ability to intuit what
another person is thinking so that both can work toward a shared goal.

' Blo

Andrew Jack in New ‘r‘ar' JANUARY 212




Qev  ETHziirich

“I think a lot of the credit for deep
learning goes to [... others ...] and
the people who made the
computers go fast.” (27:00)

“Really the deciding factor [for the
Al revolution] was the increase in
compute power” (26:50)

2018 ACM A. IVt
Turing Lecture

June 23, 2019
5:15pm MST

TURING
AWARD

Geoffrey Hinton Yann LeCun

https://www.youtube.com/watch?v=VsnQf7exv5I
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How do we “Make Computers go Fast”?

202 1 Turing award T JaCk Dongarra “Thara's phanty of room at the Top: YWhat will drive complbar

performance after Moore's law'™

The Take Away Ledserson of al, Sciener 368, 1079 (2020) 5 June 2020

The Top

- o B runnclicngy SLO10811 1180001 - f—r-tq‘
Supercomputers « HPC Hardware is Constantly Changing thiediis ssstot ﬁfr} el

1100101 SH384040

are very (>70%) « Scalar Software Algorithens Hardware architecture
efficient at dense « Vector R g i T
linear algebra! « Distributed e it e i e e

« Accelerated
« Mixed precision R
 Three computer revolutions AT
» High performance computing
« Deep learning
» Edge & Al
« Algorithm / Software advances follows hardware
» And there is “plenty of room at the top”

Letserson of al, Sciemor 368, WTH (0rH0) 5 Jung 2020

https://www.youtube.com/watch?v=IsnRP9akCDk



https://www.youtube.com/watch?v=lsnRP9akCDk

DACSTIT R A Qo . ETHzlrich

spcl.ethz.ch

FINANCIAL TIMES

Artificial intelligence <+ Add to myFT)

The billion-dollar bet to reach human-level Al

OpenAl believes that huge computing power is key driver

In the race to build a machine with human-level intelligence, it seems, size

really matters.

“We think the most benefits will go to whoever has the biggest computer,” said

Greg Brockman, chairman and chief technology officer of OpenAl.

The San Francisco-based Al research group, set up four years ago by tech

industry luminaries including Elon Musk, Peter Thiel and Reid Hoffman, has

just thrown down a challenge to the rest of the AI world.

Richard Waters in San Francisc AUGUST 32019 | D 140 E

source: ft.com
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Supercomputers fuel Modern Al [savstees Google artificial intelligence

supercomputer creates its own ‘Al child’
that can outperform its human-made rivals

The NASNet system was created by a neural network called AutoML earlier this year

Facebook parent Meta creates powerful Al
supercomputer
Mark Hodge

Facebook's parent company Meta says it has created what it believes is among the fastest artificial 15:22,5 Dec 2017 | Updated: 11:27, 6 Dec 2017
intelligence supercomputers running today

l|3-_.- TheuAiszoiiitf? E’ﬁs: o 7 Share
Microsoft invests $1 billion in
OpenAl to pursue holy grail of
Tesla unveils Dojo supercomputer: world’s new artificial intelligence
mos'l' powerful Al ‘I‘rc“n'ng moch'ne Building artificial general intelligence is OpenAl's ambitious goal
Fred Lambert - Aug. 20th 2021 3:08 am PT W By James Vincent | Jul 22, 2018, 10-95am FOT 10k GPUS
o f(x)
reddit _— > [ o [
o sometimes 0.28 sometimes 0.00
EW® >\ ey __injurea i |k . r\ | b X aways | oo aways | 500
Vol human pelng_or, = = E =1 8" m ; g E =1 |8 m o~ F never 0.04 never | 0.00
¢ Jthrough inaction, & =xlz[ EE[ = *°° =z 1z [E&|z] & and | 033 and | 0.00
allow a human "R B | B PRI R boat | 0.02 boat | 0.00
bemg to come house 0.02 house 0.00
to harm.
layer-wise weight update
= GPT-3: 500 billion tokens = GPT-3: 96 (complex) layers = GPT-3: 30-50k dictionaries
= |mageNet (22k): A few TB 175 bn parameters (700 GiB in fp32) = takes weeks to train
= Soon: the whole internet! 2048-token “sentences”

T. Ben-Nun, TH: Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, ACM Computing Surveys (CSUR), 2019
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Large-Scale Al is the Future

We need a Principled Approach to it
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Three Systems Dimensions in Large-scale Super-learning ...
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High-Performance 1/0 High-Performance Compute High-Performance Communication

* Quickly growing data volumes « Deep learning is HPC * Use larger clusters (10k+ GPUs)
* Scientific computing! e Data movement! Model parallelism
* Use the specifics of machine « Quantization, Sparsification * Complex pipeline schemes
learning workloads  Drives modern accelerators! Optimized networks
* E.g., intelligent prefetching Data Movement Is All You Necd: A Case Study o Distribution and Parallelism
Optimizing Transformers Data Pipeline Operator

- Andrei Ivanov®, Nikoli Dryden®, Tal Ben-Nun, Shigang Li, Torsien Hoefler
CLAIRVOYANT PREFETCHING FOR DISTRIBUTED MACHINE LEARNING I/O ETH Ziirich

r C namefinf.ethz.ch
ual contribution

Roman Bihringer ! Nikoli Dryden’ Tal Ben-Nun' Torsten Hoefler '
e widely used for language  challenges such as artificial general intelligence [27). Thus,

improving transformer performance has been in the focus of
numerous research and industrial groups.

Significant attention has been given to optimizing transform-
and fixed-window attention [28]-[32], more general
ity [34]-[36], and other

ABSTRACT
1/0 is emerging as a major bottleneck for machine learning training, especially in distributed environments such
as clouds and supercomputers. Optimal data ingestion pipelines differ between systems, and inc
nd remote workers:

ers: loc
structured sparsity [33], learned spa 3
algorithmic techniques [19], [37] improve the performance of

y— requires a delicate balance between access 1o local storage, external Iﬂu} Gl
ol i Tinaributed (eep Learming: An
- transformers. Major hardware efforts, such as Tensor Cores
- pattern for traini e clairvoyance and can exactly predict when a Further, existing frameworks use suboptimal data lay und TPUs [38] have accelerated tensor operations like matrix
o these insights, we present a recipe for globally optimi and 1FUs L @ atrix-
b We combine this with a theoretical nn.ll}\h of access patterns in training and performance modeli " matrix multiplication (MMM), a core transformer operation.
= novel machine 1 — achieve a 1.30x performance improve-  Despite this, existing implementations do not efficiently
— flexible, and scalable solution that delivers better performance than state-of-the-art approaches while requiring ment over state-of-the-art frameworks when (raining BERT. g GPUs. Even optimized implemeniations such as Mega-
: very few changes to existing codebases and supporting a broad range of environments. Our_approach is applicable more broadly to optimizing deep 0 |18] report achieving only 30% of peak GPU flopls
— ! neural networks, and offers insight into how 1o tackle emerging ; Ny
~ . We find that the key bottleneck when training transform-
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High-Performance 1/O for Deep Learning —

Nail )
= Example: ResNet-50 3.8 Gflop inference, =3x for training

= |mageNet is 150 GiB for ®1.3M images = average size 115 kiB, range: 508B - 15MiB
= MLPerfv2.1 on one H100 - 81k samples/s = 9.3 GiB/s random access = ~50 SSDs / GPU
Likely more for problems from scientific computing!

* Training on thousands of GPUs may need to manage 10,000s of SSDs

Near-optimal Pre-Fetching System, aka. NoPFS

= But why do we need those even? Deep Learning workloads “randomly sample” input!
= By “random”, we really mean pseudo-random sequences with fixed seeds ©

This enables clairvoyant prefetching! O

-
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Clairvoyant Prefetching for Distributed Machine Learning 1/O (arxiv 2101.08734)

= NOPFS acts as a distributed cache — each node keeps cache — fully knowing about the future!

-

single-process access to samples
for ImageNet with 16 processes

Most samples accessed

< 4-6times by this worker
200000 PRNG seed — Access streamR = (---,7,4,5,8, )
Some Accesses for worker i
samples are
m 150000 accessed 18 Cached in local
2 storage
= times! 6
M
2 100000 Long tail of samples Fetched from remote
accessed very frequenti workers
50000 I I
: _I Il-_
14 16 18

Access freq uency
10
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Clairvoyant Prefetching for Distributed Machine Learning I/O

. - Piz Daint
P&/T(@A -« >100x!
f “‘F 1A 1 X 1 1.75
Max: 55.0 Max: 56.1 Max: 52.8 Max: 51.4 Max: 1.3 Max: 53.0 Max: §
6 NoPFS 150
w o 1.25
q) o
E 4 £ 1.00
-S =
2 ﬁ 0.75
m 2 Q
m 0.50
; “ “ 0.25
/ 32 64 128 256 0.00 39 64 128 256 512 1024
+ DAL #GPUs
PyTorch + DALI 4GPUs

ImageNet 1k with ResNet-50
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Clairvoyant Prefetching for Distributed Machine Learning I/O

NoPFS acts as a distributed cache — each node keeps cache — fully knowing about the future!

runtime per epoch (full training time)

300
= mmm PyTorch B NoPFS - M PyTorch — === No |/O
o 400 mmm PyTorch+DALI === No |/O Y 200 mmm  NoPFS
- £ 5.4x faster
E =
o 200 g 100
o (=
w ]

=]
=

32 64 128 256 32
#GPUs

ImageNet 1k with ResNet-50
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Three Systems Dimensions in Large-scale Super-learning ...
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High-Performance Compute High-Performance Communication
« Deep learning is HPC * Use larger clusters (10k+ GPUs)
* Data movement! * Model parallelism
* Quantization, Sparsification * Complex pipeline schemes
* Drives modern accelerators! * Optimized networks
Data Movement Is All You Need: A Case Study on Distribution and Parallelism

Optimizing Transformers

Andrei Ivanov®, Nikoli Dryden®, Tal Ben-Nun, Shigang Li, Torsien Hoefler
Ziirich

@ Data Pipeline Operator

firstname.lastname@inf.ethz.ch
* Equal contribution

challenges such as artificial general intelligence [27]. Thus,

Wil

2020

We find that data movement is the key bottleneck when s

Due to Amdahl’s Law and massive improv i
performance, training has now become memo
frameworks use suboptimal data

Jul

™ n (MMM), a core transformer o
ing implementations do na
optimized implemeniations s

Our approach is applicable more broadly to ot

as Mega-
p : only 30% of peak GPU flop
neural networks, and offers insight Into how to tackle emerging g anly 2 o GPU flopis

£
We find that the key bottleneck when training transform-
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Data Movement Is All You Need: A Case Study on Optimizing Transformers

BERT encoder Output highly
e ™ .
dijear optimized )
3 ~ladd & LaVerNO"m] Operator class % flop % Runtime
[ Concatenate ] [Feedf”‘”ard ”et] £ Tensor contraction 99.80 61.0
(XY z
£ g
Scaled dot-product attention 0 2 eyt £ Statistical normalization 0.17 25.5
softmax = z
,-H_']ﬁ ,-H_']ﬁ H-'a—'] [ Sy ] E Element-wise 0.03 13.5
L|near Lmear Lmear attention .
0.2% 39%
o I
U J
Positional
3
[ input embedding | Our performance improvement for BERT-large
’ 0
Input - 30% over PyTorch
= 20% over Tensorflow + XLA
S S L e - 8% over DeepSpeed

Last week, OpenAl published a paper detailing GPT-3, a machine learning model that achieves

strong results on a number of natural language benchmarks. Ay 175 billion parameters
where a parameter affects data’s prominence in an overall prediction, it's the largest of its est. SaVingS on AWS over PyTO rch:
kind. And with a memory size exceeding 350GB, it's one of the priciest, costing an estimated $85k for BERT S3 6|V| G PT_3

; 2

$12 million to train.
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Data Movement Is All You Need: A Case Study on Optimizing Transformers

° /\ Tensor contraction ‘b , ( :”: )
§V> % [] Normalization §© % different data dxlin2, linl

(O Elementwise 910 9G M: 4096, N: 4096, K: 1024, B: 1
whi,ibk->whbk phl ibk- >phbk phl ibj- >phbj - layouts worst: 2.46 ms best: 0.37 ms

l \ . Tensor Cores -_ e

4M 34M - worst: 3.29 ms best: 2.32 ms a C e
bias [wh] dropout . L6.bit FPUS —0—“
blas [ph] blas [ph] . . | | . https://github.com/spcl/dace
, ' ' 0 25 50 75 100
G d ifferent fusion % of peak performance
4 @
whbk,hbjk- >thj strategies
A v @ AIB BAIB : : i
@ D Aphbk,phbj->hbj< 10 = op P EE— Configuration selection graph
v 10 < flop QKV-fused AlB
9G 910 0751
- hi hb'->'b @ A infout out
AW I,whbj->ibj flop / 10 @ N
| 168M = 050- —
IS
i

target

ftmax [
@ bias [} | M HA i {} 0.25-

0- pest:0.065 0.00- best 0.033

Full BERT encoder layer performance (ms)

data layout
TF+XLA PyTorch DeepSpeed Ours
Forward 3.2 3.45 2.8 2.63 '
Backward 5.2 5.69 4.8 4.38 fusion strategy
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Moving Data is Most Expensive!

Techniques to Shrink ML Data
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Quantization — Running Gigantic LLMs on Reasonable Systems ﬁ

= Brains have limited precision! Why are we computing with FP32?
= For technical reasons (SGD, optimization, how we quantize)
= Neurons in Hippocampus can “reliably distinguish 24 strengths” [1]

4.6 bits of information! L s,
=  GPT-3 has up to 175 billion parameters
= 700 GiB in FP32, 350 GiB in FP16/BF16 ®
S
= Rounding to <5 bits is not so simple '
= Requires some foundation and many tricks N
= Consider “error landscape” of a trained model with weights w [2] xl)
oE\" 1 0°E 1 x,
0E = |—)] ow +=aw! [ ——]ow + O0(Jow|?)
ow 2 02w
ot / h >
“Curvature” of error Higher-order terms
(aka. “sensitivity”) (=0 for quadratic loss)
X1
>

[1] Bartol et al., “Hippocampal Spine Head Sizes Are Highly Precise”, eLife 2015
[2] LeCun, Denker, Solla: “Optimal Brain Damage”, NIPS’90
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Quantization — Running Gigantic LLMs on Reasonable Systems

= Quantization objective for low precision rounded weights w

argming, ||lwx — wx||?

= Solve PTQ optimization problem row by row of w

= Round row and push the error forward using the inverse Hessian

= Update Hessian for each column
=  Tricks

= Block updates for better locality (10x speedup)
= Use Cholesky to invert Hessian (higher stability)

= Work one transformer block at a time (6 operators fit in memory)

= Use quantized input from previous blocks for block i
=  Results

= Generative inference 2-4x faster

= 3 bits = 66 GiB, fits in a single (high-end) A100 GPU!

| Model | FP16 | 1024 512 256 128 o4 32 | 3-bit |
OPT-175B | 8.34 | 11.84 10.85 10.00 9.58 9.18 8.94 | 8.68
BLOOM 11 | 11.80 10.84 10.13 955 09.17 8.83 | 8.64

Table 6: 2-bit GPTQ quantization results with varying group-sizes; perplexity on WikiText2.

YW @spcl_eth

&

GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR
GENERATIVE PRE-TRAINED TRANSFORMERS

A PREPRINT

Elias Frantar*
IST Austria
Klosterneuburg, Austria
elias.frantar@ist.ac.at

Saleh Ashkboos
ETH Zurich
Switzerland
saleh.ashkboos@inf.ethz.ch

Torsten Hoefler
ETH Zurich
Switzerland

htor@inf.ethz.ch

Dan Alistarh
IST Austria & Neural Magic, Inc.
Klosterneuburg, Austria
dan.alistarh@ist.ac.at

ABSTRACT

Generative Pre-trained Transformer (GPT) models set themselves apart through breakthrough per-
formance across complex language modelling tasks, but also by their extremely high computational
and storage costs. Specifically, due to their massive size, even inference for large. highly-accurate
GPT models may require multiple performant GPUs to execute, which limits the usability of such
models. While there is emerging work on relieving this pressure via model compression, the appli-
cability and performance of existing compression techniques is limited by the scale and complex-
ity of GPT models. In this paper, we address this challenge, and propose GPTQ, a new one-shot
weight quantization method based on approximate second-order information, that is both highly-
accurate and highly-efficient. Specifically, GPTQ can quantize GPT models with 175 billion pa-
rameters _in approximately four GPU hours, reducing the bitwidth down to 3 or 4 bits per weight.

Perplexity on WikiText2

Figure 1: Quantizing OPT models to 4 and BLOOM models to 3 bit precision, comparing GPTQ with the FP16
baseline and round-to-nearest (RTN) [34, 5].

OPT Model Family

BLOOM Model Family

30
25

L, : T :
o H : 601
i 110!
: : o 50
L} Ej
., 2
™
= 40 3bit RTN
g 3bit GPTQ
>
230 e FP16 e
% Y cal
3 F20f Ssal ng
1 = abitRTN ~ i of
m  4bit GPTQ "'-o.._____:_. ! ng
e FP16 10 R == I3
at.
1071 10° 10! 10? 10° 10! 102 ng

#params in billions

#params in billions
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Quantization Reduces Data by an Order of Magnitude

How to Go Further?
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Model Sparsification ...

= Brains are not densely connected! Why are DNN computations dense?
= For technical reasons (training, implementation etc.) L)

= We may want to shift towards sparse!

Sparsity in Deep Learning: Pruning and growth for efficient
inference and training in neural networks

Intuition: not all features
are always relevant!

TORSTEN HOEFLER, ETH Ziirich, Switzerland

A, DAN ALISTARH, IST Austria, Austria
1 TAL BEN-NUN, ETH Ziirich, Switzerland
o Represent as (sparse Wig 1 NIKOLI DRYDEN, ETH Ziirich, Switzerland
. (@]
: ~  ALEXANDRA PESTE, IST Austria, Austria
ve Cto r S pa Ce W34 2 The grow| a7 o/ = & ETH:ziirich o ] hce the size
\/ H H of neural Back to data science — overview of approaches y o LS, sparse
LeSS Ove rfl ttl n g (: networks reduce the
' memory f Sparsification er growing
11 networks| - live tutorial
v Interpretability o] S ot conemers oary @RS fments of
\/ P 1 neural nef o iy ——  |sparsity in
tice. titi
arsimony Dracce. (i T T ]

% fal =2t €1 State
include tH $ B T J gradient-based optimization Imena such
4

nstructured  structured
as carly s utﬁne—‘;rai:ed] (blocked) “f“"i"ﬂ:‘s and show
i (e.2., Rel .
th e f t re Wi I b s rs technique atfects inference + forward pass - r efficiency
p that could ng on how
— — — — — —
sparsity ¢
=N
wforonces n Hosflo et al, “Sparsity n Pruning networks’, arki 210200554, |
K |t . The Su] Sparsity in Deep Learning: Pruning + growth for efficient inference and training in neural networks as fEW as
ey resuits: possible ze, Scalsble Parallel computing Lab QETHZu.. - (Y B P Hswe =tsme - Prience -

tein, 1933

71K views 1 yearago SPCL Lab talks
Torsten Hoefler presents an overview of sparsity in deep leaming. Check the markers for various parts of the talk

- 95% sparse ResNet-52,
BERT, or GPT models

- Esse ntla I Iy same q ua I |ty Deep learning shows unparalleled promise for solving very complex real-world problems in areas

such as computer vision, natural language processing, knowledge representation, recommendation

- U p to 2 OX C h ea p er ! systems, drug discovery, and many more. With this development, the field of machine learning

is moving from traditional feature engineering to neural architecture engineering. However, still

Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv 2102.00554, Jan 2021

1 INTRODUCTION

irXiv:2102.00554v1 [cs.LG]

P
C




AT T » Eo T P o g g:zz/’_ . ETHzUrich

spcl.ethz.ch

Sparse ML Computations — Very Different from Scientific Computing!

Sparsity: 0.01
0 200 400 600 800 1000

A ™ — ‘ % N Sparsified BERT
. E L T | WK and WQ matrices

800 S

(37 encoder)

Sparse Matrices from Scientific Computing | IR
are quite structured! WK . sesivon

0 200 400 600 800 1000
'If 1"||‘ t;\ T
o s I
4 e
A
\ .-
.l
.\:I
1

Sparse Matrices in Deep Learning

"o are quite uniform(ly random)!

vv_
Ly

Source: Suite Sparse (sparse.tamu.edu)

600 N

500 - TR

WQ

1000 - T
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Programming Sparse Models — Meet PyTorch Sten (arXiv:2304.07613) O

Sparsity Layouts Operators Sparsifiers
( Outputs \
Dense Tensor Inputs Streamed
Dimensions Blocked
Strides '\’ Materialized
Dense values A Output
> —>
Sparse Tensor
Dimensions
Sparsity Format v < v ”
Compressed values : eep-a
: defined by imputioutput Random fraction
Y P P Scalar threshold
sparsity layout
Selected Available Sparsifiers:
Keep all Random fraction Scalar threshold Per block fraction Scalar fraction
B—>0 B—> 0 B—> [ —> B I—.>D —> B I—.>D
do not drop if drop if Find block Drop if Find Drop if
drop rand < 0.5 value <0 guantile q below quantile q below

Blocked
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Sten Performance

P — 1 ------------------- o N BERT (base) from HuggingFace
| Linear \ —'[Add&LayerNorm] ] batch size 8
. . = = sequence length 128
Custom implementation of : [ concatenate | 1k lpeedforwardﬁ:net
. . . . 7 || RelU(xW; + bW, + b, o g . .
matrix multiplication: IT I | > Sparsified linear layer weights
| Scaled dot-product attention . rey
sparse @ dense -> dense [ coftmar(aQ K1)V ]J | T[Add&Laver}@/ Intel i7-4770 CPU
Linear layer: y=xW +b e H | e
1 1
[Linear]_] [Linear]_] [Linear]J/r /rattention ]
ot f f B S & i
Qo K V. Y,

dense dense sparse dense

2:6 sparse format

VENOM @ SC23 — 10x speedup on GPUs!

R. Castro et al.: “VENOM: A Vectorized N:M Format for Unleashing the
Power of Sparse Tensor Cores”, accepted at SC23
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Model Compression Enables

More Efficient Processing

Which Makes Data Movement Even More Important!

Especially in the Network!
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Three Systems Dimensions in Large-scale Super-learning ...

N e} = g 5} p— 2
2 25 J. 2 > § J. 2
b -

— '

/

High-Performance Communication

* Use larger clusters (10k+ GPUs)
* Model parallelism

e Complex pipeline schemes
* Optimized networks
Distribution and Parallelism
Data Pipeline Operator

Iullwll‘lmll.‘l.‘l

el O
— A
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

S

Data Parallelism

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018 26
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Data-parallel Gradient Sparsification — Top-k SGD @

=  Turns out 90-99.9% of the smallest gradient values can be skipped in the summation — at similar accuracy
= Accumulate the skipped values locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])

ResNet-110 on CIFAR10
2.0
Assum ve:
I tn 1.5 -
L=
=
c
£ 1.0 |
©
—

. 0.5 )
Discuss tasks in
Section

0.0 1
] ] ] ] ] ] 1 ] ]
0 20 a0 60 80 100 120 140 160
Epoch
—— Baseline —— TopK [K=0.025%] —— TopK [K=0.1%] —— TopK [K=0.2%]

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18
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SparCML - Sparse Allreduce for Decentral Updates @

1 2 3 4 Six epochs, 60 million params
1.225 A1 — 16-GPU BMUF 128 | === Linear Scalability
32-GPU SparCmL —e— SparCML
—— 64-GPU SparcML

1.200 4 —— 128-GPU SparCML

1.175 4

1.150 A
w
w
=2
o L1254 &4
(]

1.100 4 ; \ . . ; ; ]

0 200 400 600 800 1000 1200
{min)
1.075 4 2
. . TR
L. '
1.050 1 -
8
10251 . . . . . . . 1
0 2500 5000 7500 10000 12500 15000 17500
time (min) 148 16 32 64 128

Microsoft Speech Production Workload Results — 2 weeks = 2 days!

System Dataset | Model # of nodes | Algorithm Speedup
Piz Daint | ImageNet | VGG19 8 | Q4 1.55 (3.31)
Piz Daint | ImageNet | AlexNet 16 | Q4 1.30 (1.36)
Piz Daint . | Topl6_Q4 3.65 (4.53)
EC2 MNIST MLP 8 Topl6_Q4 | 19.12(22.97)

C. Renggli, TH et al. SparCML: High-Performance Sparse Communication for Machine Learning, SC19



e —] o/ = B

Qev  ETHziirich

spcl.ethz.ch

Sparse Allreduce — A Headache for Systems Work

Shigang Li
shigang.li@inf.ethz.ch
Department of Compuler Science, ETH Zurich
Switzerland

Abstract

Communication overhead is one of the major obstacles to
train large deep learning models at scale. Gradient sparsifica-
tion is a promising technique to reduce the communication
volume. However, it is very challenging to obtain real perfor-
mance improvement because of (1) the difficulty of achieving
an scalable and efficient sparse allreduce algorithm and /™
the sparsification overhead. This paper proposes ™’

Topk integrates a novel sparse -7
6k communication v~

= e

dm m“ _a SIM-
ilar m _.pared with the
opti

_ae-art sparse allreduces,

Ok-Tc ad significantly improves training
throug ., 2.49%-12.95x improvement for BERT on 256
GPUs).

CCS Concepts: « Theory of computation — Parallel al-
gorithms; « Computing methodologies — Neural net-
works.

Keywords: distributed deep learning, allreduce, gradient
sparsification, data parallelism

scheme for distributed training with < ‘

xiov

Near-Optimal Sparse Allreduce for Distributed Deep
Learning

Torsten Hoefler
htor@inf.ethz.ch
Department of Computer Science, ETH Zurich
Switzerland

introducing up to 99.9% zero values without significant loss

of accuracy. Only the nonzero values of t+ wuted gra-
dients are accumulated across =" 2] for an
overview of gradient »=~ wches in

deep learnine
Ho ‘ssues.
“ sarse
“ \ sses
\'\ 47]
\ e .
\\
“ o _ suffer from

., which also leads to a

siume as P grows, and may de-
_.csentations on the fly. For example, let us
the model has 1 million weights and it is 99% sparse

«t each node—thus, each node contributes its 10,000 largest
gradient values and their indexes to the calculation. Let us
now assume that the computation is distributed across 128
data-parallel nodes and the reduction uses a dissemination
algorithm [20, 28] with 7 stages. In stage one, each process
communicates its 10,000 values to be summed up. Each pro-
cess now enlers the next stage with up to 20,000 values.
Those again are summed up leading to up to 40,000 values
in stage 3 (if the value indexes do not overlap). The number
of values grows exponentially until the algorithm converges
after 7 stages with 640,000 values (nearly dense!). Even with
overlapping indexes, the fill-in will quickly diminish the ben-
efits of gradient sparsity in practice and lead to large and

cosbnsntiseanl sicabine yralieane (201

Flare: Flexible In-Network Allreduce

Daniele De Sensi
daniele.desensi@inf.ethz.ch
ETH Zurich
Zurich, Switzerland

Shigang Li
shigang li@inf.ethz.ch
ETH Zurich
Zurich, Switzerland

ABSTRACT

The allreduce operation is one of the most commonly used com-
munication routines in distributed applications. To improve ite
bandwidth and to reduce network traffic, this operatic-
accelerated by offloading it to network switchee

data received from the hosts, and ser-

result. However, existing sr'- \
opportunities and - %

dealing with cu “

when reproduciu a

these problems, .

switch by using as

plementing the sPL

and analyze differen

this architecture, shc Co _supared

to state-of-the-art app

CCS CONCEPTS

+ Networks — In-network processing; « Hardware — Net-
working hardware; - Computer systems organization — Dis-
tributed architectures.

KEYWORDS

In-Network Computing; Programmable Switch; Allreduce

ACM Reference Format:

Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang Li,
and Torsten Hoefler. 2018. Flare: Flexible In-Network Allreduce. In Super-
computing '21: The International Conference for High Performance Computing,
Networking, Storage, and Analysis, Nov 14-19, 2021, St. Louis, MO. ACM, New

Salvatore Di Girolamo
salvatore.digirolamo@inf.ethz.ch
ETH Zurich
Zurich, Switzerland

u’ta‘

Saleh Ashkboos
saleh.ashkboos@inf.ethz.ch
ETH Zurich
Zurich, Switzerland

Torsten Hoefler
torsten.hoefler@inf.ethz.ch
ETH Zurich
Zurich, Switzerland

others, and re~ I_Allreduce is the

most = “ time”.
o 'rithm is the Raben-

1]. This algorithm
allgather phase.
-h of these two
‘ wessages, each
o educed). The
. wuen 2(P — 1)1-; 2Z.
_.ued data, and thus increase the
- exploit in-network compute, ie., they can
_cuuce operation to the switches in the network.
_ vutline the advantages of performing an in-network allreduce,
we describe the general idea underlying most existing in-network
reduction approaches [9-11]. We first suppose to have the P hosts
connected through a single switch. Each of the hosts sends its data
to the switch, that aggregates together the vectors coming from
all the hosts, and then sends them back the aggregated vector. Dif-
ferently from the host-based optimal allreduce, in the in-network
allreduce each host only sends Z elements, thus leading to a 2x
reduction in the amount of transmitted data. If the switches can
aggregate the received data at line rate, this leads to a 2x band-
width improvement compared to a host-based allreduce. Besides
improvements in the bandwidth, in-network allreduce also reduces
the network traffic. Because the interconnection network consumes
a large fraction of the overall system power (from 15% to 50% de-
pending on the system load [12]), any reduction in the network
traffic would also help in reducing the power consumption and thus
the running cost of the system.




P —7 o/ = B s O e ETHzUrich

spcl.ethz.ch

The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

(e = |
> 2w = |

Pipeline Parallelism

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018 30
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Bidirectional Pipelines — Meet Chimera (arxiv: 2107.06925v3)

model replica0
Ny P1 q

P2 0
v | P3 } O ‘ / d . I.

N /2 = 2 micro-batches, where N=D =4 own pipeline
flush
1
P1 (stage2) Z 3 | 2 U 3 1

w

P2 stagel 2(0]3 o 211
1 2 3 0 1 2 3

P3 stageO .
Chimera (backward is 2x workload of forward) .

S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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Chimera Weak Scaling (arxiv: 2107.06925v3)

e 1.38x - 2.34x speedup over
synchronous approaches

PipeDream (D=8, B=[128, 512], R) (Gpipe’ GEMS’ DAPPLE)
B PipeDream-2BW (D=16, B=1, R) e Less bubbles

" GPipe (D= [8,16], B=1, R)

Pcens (=5, B=2) * More balanced memory
" DAPPLE (D=16, B=1, R)

B chimera (D=32, B=1) I

(&)
o
o

AN
o
o

thus no recomputation

w
o
o

N
o
o

1.16x - 2.01x speedup over

asynchronous approaches

(PipeDream-2BW, PipeDream)
* More balanced memory

RN
o
o

Throughput (sequences/s)

512 nodes 1024 nodes 2048 nodes thus no recomputation
Weak scaling for GPT-2 on Piz Daint * Gradient accumulation thus
(512 to 2048 GPU nodes) low synch frequency

32

S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

Operator Parallelism

S &9 = |
> a® = |
> 2% = |

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018 33
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Operator Parallelism, i.e., Parallel Matrix Matrix Multipli 58

Remember those?
All MMM

= Large MMMs dominate large language models! ,
Operator class % flop % Runtime

= e.g., GPT-3 multiples 12,288x12,288 matrices

600 MiB in fp32 and 1.9 Tf/op Tensor contraction 99.80 61.0
= generative inference multiplies tall & skinny matrices Statistical normalization 0.17 255
Element-wise 0.03 13.5

= Distribute as operator parallelism
= Heaviest communication dimension!

Requires most optimization! = CARMA = Scal APACK wen CTF e COSMA (this work)
§ 100 SQUARE MATRICES TALL MATRICES maximum
[4e}
= COSMA [1] communication-optimal distributed MMM g ® geometrlc
. . _ (2mnk mnk \ 2 = mean
= Achieves tight I/O lower bound of 0= mm{ v +5,3(7) } g 6
. . . . =~
= Uses partial replication with an outer-product schedule T 0
o
See paper for details and proofs! 5
. . S
= AutoDDL [2] combines operator-parallel models into s 0 I it e
communication-avoiding data distribution STRONS  MEMORY  MEMORY  SCALNG  MEMORY  MEMORY

[1] G. Kwasniewski et al.: “Red-Blue Pebbling Revisited: Near Optimal Parallel Matrix-Matrix Multiplication”, best student paper at Supercomputing SC19
[2] ). Chen et al.: “AutoDDL: Automatic Distributed Deep Learning with Asymptotically Optimal Communication”, arXiv
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The Three Dimensions of Parallelism in Deep Learning

Operator Parallelism Data Parallelism
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T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Communications in 3D Parallelism in Deep Learning (arXiv:2209.01346)

. . . . | | ] ame
Data Parallelism @ Pipeline Parallelism g & Operator Parallelism 288
allreduce ring
1 2 p I

2

communication
1

%
X A

‘ N/
s %

7

7
N 1200
/X XN

.QA

e 4 ¢
AN 7)”&

N X7
Dot
UK

A

%7

v‘ X
22

A fat tree with 16k
accelerators and 1.6T

would cost S680M!
AR

Communication
is (largely) a
logical 3D Torus

Al bandwidth today / yesterday (and growing!)
Google TPUv2 (‘21): 1T
AWS Trainium (‘21): 1.6T

7\ AN

T

FN

NET

N WA AV Z4 WY
211 2 g’g AN  DGX-2 (A100, 21): 4.8T (islands of NVLINK)
= ’;vv.;«w < * Tesla Dojo (‘22): 128T
%é A‘k l"\ - Broadcom TH5 / NVIDIA Spectrum 4: 51.2T
o o,P,1

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, to appear at SC22 and arXiv (2209.01346) 36
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Co-designing an Al Supercomputer with Unprecedented and Cheap Bandwidth

accelerator N1 N2 N3 N4 packet ﬁ each plane fully-connected in x

four directions

package - switch per plane (N,S,E,W) axb accelerators
Y per board
= four planes inexpensive short

P .
- per accelerator PCB connections

Wi i El on board

[~
x; 9 [ Z _______________ ' |

L B S e QTR Y] G5 Y A TTTRSTT SN O QTN 171 A4 S TR T) A v S (Y )~ VD Sy A 'n
w4 ‘5' E4 - - - éj;‘b .

. 51 .32 3 54 E=_ta] il s = = I R L

poard 1311 132 B 4x4 board
a i L Ty sl r_%h 18 - - - —
- e S - R R -
T S e bR e T
e e g, | R S
T =T L T ol B S R e e N e R T

) Ll ) Ll

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, to appear at SC22 and arXiv (2209.01346)
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Bandwidth-cost-flexibility Tradeoffs

Global Topology HammingMesh
(e.g., Fat Tree) (many configurations)
= [
A P b2
/H\ /Q\ é% ™~ g’%

/N

&
& 0 e e e e e @ L o8&
- & -

(large) reduce bandwidth oy ey e €y oy ey

S
~J
S

global bandwidth Gy € € € €y
placement flexibility 'Er/t 'ﬁ/t 'Er/t {lt {i/" - {lt {lt {i/"
injection bandwidth s s s s s - s s

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, to appear at SC22 and arXiv (2209.01346)
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Local Topology
(e.g., 2D Torus)

- - R - R
e -F-R-R
oy 6y e
€

{z
$S



ST e ol oo

o v ounen ETHZUrICh
spcl.ethz.ci

Three Systems Dimensions in Large-scale Super-learning ...
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What will the (near future bring)?

Some predictions for the future of HPC but also computing at large!
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Prediction 1: Accelerators Converge

Al is a gravity well — HPC will follow
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Domain-Specific Computation Enables Workload
Optimization which Drives Performance and Efficiency

Future Accelerators ...

=  Most of the performance will be low precision arithmetic!
= | would predict (C)FP8 or smaller
= We can be lucky if we get some fp64!

nific:

ISSCC’23

. o . o . H100
= They will support quantization and sparsity in hardware SXM
= Vector scaling and zero points FPod 34TFLOPS
FP64 Tensor Core 67 TFLOPS
FP32 67 TFLOPS
. . . . TF32 Tensor Cpre 989 TFLOPS*
= They will heavily be optimized towards data movement srLoatie \ 30X™1.979 TFLOPS"

Tensor Core

= Physical limits and cost introduce two fundamental constraints:
FP16 Tensor Core 1,979 TFLOPS*

Latency will become a problem FP8 Tensor Core  |* 3,958 TFLOPS*
Locality and sparse connectivity INTE Tensor Core | 3,358 TOPS
= Potentially hard to program
11 111 111 111
SRR e

Optimized topologies and network
technologies.

E.g., HammingMesh
https://www.youtube.com/watch?v=xxwT45|jG40

L R ) B 9,@)5::“.

B. Wisniewski (Samsung)
Memory-coupled Compute

SPCL_Bcast 01/19/23
https://www.youtube.com/watch?v=KCrQtpx31CQ
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Sparse-Quantized Representations - SpQR

SpQR: A Sparse-Quantized Representation for
Near-Lossless LLM Weight Compression

Tim Dettmers* Ruslan Svirschevski* Vage Egiazarian*
University of Washington HSE University & Yandex HSE University & Yandex

Denis Kuznedelev* Elias Frantar Saleh Ashkboos Alexander Borzunov
Yandex & Skoltech IST Austria ETH Zurich HSE University & Yandex
Torsten Hoefler Dan Alistarh
ETH Zurich IST Austria & NeuralMagic
Abstract

Recent advances in large language model (LLM) pretraining have led to high-
quality LLMs with impressive abilities. By compressing such LLMs via quanti-
zation to 3-4 bits per parameter, they can fit into memory-limited devices such
as laptops and mobile phones, enabling personalized use. However, quantiza-
tion down to 3-4 bits per parameter usually leads to moderate-to-high accuracy
losses, especially for smaller models in the 1-10B parameter range, which are
well-suited for edge deployments. To address this accuracy issue, we introduce the
Sparse-Quantized Representation (SpQR), a new compressed format and quantiza-
tion technique which enables for the first time near-lossless compression of LLMs
across model scales, while reaching similar compression levels to previous methods.
SpQR works by identifying and isolating outlier weights, which cause particularly-
large quantization errors, and storing them in higher precision, while compressing
all other weights to 3-4 bits, and achieves relative accuracy losses of less than
1% in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it
possible to run 33B parameter LLM on a single 24 GB consumer GPU without any
performance degradation at 15% speedup thus making powerful LLMs available to
consumer without any downsides. SpQR comes with efficient algorithms for both
encoding weights into its format, as well as decoding them efficiently at runtime?.
Specifically, we provide an efficient GPU inference algorithm for SpQR which
yields faster inference than 16-bit baselines at similar accuracy, while enabling
memory compression gains of more than 4x.

irxXiv:2306.03078v1 [cs.CL] 5 Jun 2023
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Prediction 2: Programming and Tools Converge

Data Science as a gravity well — HPC will follow



Qew  ETHzirich

Scientific Computing is Moving to Python (as language frontend/ecosystem) e

Tiobe Index June’23 o 'A.
TPyl <> 0 jupyter

Jun 2022 Change Programming Language IPvthon MD . ¥ ° . v
1 ~ y ANALYSS '§‘ GridTools
2 GB c
: - 1F TensorFlow
5 (Eb c# ) ]
. @ vouotsesi I::I pqndqs matplthb

thon _ .
f 2 5 @ NetworkX O PyTOI’Ch

ﬂ= Index
g

<

® Network Analysis in Python

439,100 projects
44
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Upleveling Programming in the 215t Century — Performance Metaprogramming

ain Scientist :, Performance Engineer g ii:g| = @ %
u (P g 7)), 4
—aV?u=0
dt 100s of reusable
SLOC
N NumPy DSLs Transformed Specialized
TensorFlow ‘\ O PyTorch Dataflow Code Generation

MATLAB

IR — e.g., Parametric _
" Dataflow Graphs (SDFG)
CPU Code

:
Applied Scientist !i

)
L R ——— £
translate DSL into /T — Pe::;r:;:ce = GPU Code
an Internal Representation » S\ C:D =
_ —y = FPGA Code
SDFG Builder API —C _—
Li’;”r:':;'hec:’jés Graph Transformations C++ code
(API, Interactive) generation/runtime

Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs, SC19

1000s of auto-
generated SLOC
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Prediction 3: Networks Converge

Cloud as a gravity well — HPC will follow
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COVER FETURE TECHNOLOGY PREDICTIONS CIoud HPC On Prem HPC
P AN latency 19 us 1.7us 10us 1.7 us|3.0us 2.4us
E 100 T T e T —Q— —0— O
S 75 A e
ECOVER FEATURE TECHNOLOGY PREDICTIONS
5
o S 2
< O
-
;The Convergence of ;

|

" Hyperscale Data Center i
- and High-Performance —
- Computing Networks

Torsten Hoefler, ETH Zurich

Ariel Hendel, Scola Computing | at H ypersca le 7/

Duncan Roweth, Hewlett Packard Enterprise

and Remote Direct & %

Memory Access: Issues

sDa’ra Center E’rherne’r '!allk_

We discuss the differences and commonalities between Torsten Hoefler'”, ETH Ziirich

Duncan Roweth, Keith Underwood, and Robert Alverson, Hewlett Packard Enterprise

network teChnO[ogleS Used n SuperfomDUTETS Oﬂd dOtG Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, and Surendra Anubolu, Broadcom
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Overview of and Motivation for the Forthcoming Ultra Ethernet
Consortium Specification

Networking Demands of Modern Al Jobs

Networking is increasingly important for efficient and cost-effective training of Al models. Large
Language Models (LLMs) such as GPT-3, Chinchilla, and PALM, as well as recommendation
systems like DLRM and DHEN, are trained on clusters of thousands of GPUs.
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