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Introduction

MPI as de-facto standard in parallel processing
Collective operations are integral part of MPI
Large body of research on advanced algorithms

Multiple implementations in MPI libraries:
e.g., MPICH2, MVAPICH, Open MPI

+ “Group Operations” are also used in other

environments (e.g., MRNet, Multicast)
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Motivation

+ Group Operations are a general concept
e.g., used in MPI, UPC, MRNet

+ Nonblocking Collective operations arrived
NBC will be in MPI1 3.0 (or 2.3?)

+ Most Iimplementations are hard-coded
Control-flow as static branches in source-code
Requires considerable hand-tuning
User-defined (sparse) collective operations (?)

+ Hardware offload and NBC
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Broadcast Tree Examples

+ Binomial trees used in many small-message
collectives (e.g., Bcast, Reduce)
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Our Goals

+ Define a minimal language to express
collective communication to enable:

efficient representation for offload
fast and simple execution on slow PEs
good specification of advanced algorithms

execution on resource-constrained
environments (NIC)

(automatic) transformational optimizations
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Abstracting

+ What is the minimal set of operations
needed to perform any collective algorithm?

+ Theorem 1 states that send, receive and

(local) dependencies are sufficient to model
any collective algorithm
allows concise definition!

+ Theorem 2 states that the order requirement
IS relative to each single operation
allows optimized/adaptive execution!
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Group Operation Assembly Language

+ Very low-level specification (compilation target)

cf. RISC assembler code

+ Translated into a machine-dependent form
cf. RISC bytecode

General Purpose .
Processing High-level Language Assembler Language Opcode

(existing) a=a+3 add $0x3,%eax 0x83,0xc0,0x03
Gr Operati
(;zcelsosei?glon High-level Description :> Assembly-like Code :>
(to be done) 0 sends to 1,2,3 0>1, 0>2, 0>3 0x06,0x01,0x01
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A Binomial Tree Example

rank #0 rank #1 rank #2 rank #3 rank #4 rank #5 rank #6 rank #7

= = = == ]ocal dependencies —> communication
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GOAL Language Interface

+ GOAL Language interface (Bcast example):

rank #0 { rank #1 {
send msgr,<len> to 1; r: recv<msgr,<len> from O;
send msgr,<len>to 2; | sl: send msgr,<len> to 3;

send msgr,<len>to 4; | s2: send fmsgr,<len> to 5;

rank#5 { } #

recv<msgr,<len> from 1,

} requsl->r;
requs2->r, /
()

} "o
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Group Operation Assembly Language

+ Alternative schedule creation at runtime:

T

Library interface:

gop=GOAL_Create()
Id=GOAL_Send(sched, buf, size, dest)
Id=GOAL_Recv(sched, buf, size, dest)
GOAL_Exec(sched, func, buf, size)
GOAL_Requ(sched, src _id, tgt_id)
sched=GOAL_Compile(gop)

Internal representation reflects a

dependency DAG
enables transformational optimizations
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Optimization possibilities

+ Adaptive execution
Possible to consider process arrival pattern
Independent ops: sent to ready hosts first

FLISTE
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Optimization Possibllities (cont.)

+ Parallel execution

Schedule (DAG) allows for parallel execution
+  Multiple parallel NICs

Same scheduling issues as for multicore task
libraries (TBB, Cilk, OpenMP 3.0)

+ Static schedule (compiler) optimization
e.g., architecture-dependent pipelining

+ Scheduler runs in thread or hardware

Offload to spare CPU core
Offload to NIC (same GOAL specification)
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Advanced Example - Dissemination

rank #0 rank #1 rank #2 rank #3 rank #4 rank #5
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Schedule Detalls

+ Result of GOAL assembly
Optimized for each architecture
+ Should not lose flexibility
Represents dependency/execution graph
+ Our machine-dependent representation:
We propose binary schedule

Linear memory layout (cache/pre-fetch friendly)
Executor only 98 SLOC C code in LIbNBC

Compression possible (not in this work)
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Execution Constraints

+ How much memory do we need to execute a

schedule?

We can use a sliding window (hold only parts of
the schedule in a scratchpad memory (NIC))
Theorem 3: A schedule of length N can be

executed with O(V) additional memory using a
constant-size window.

it's actually also X(N) — ©(N) see:

sliding window

_>

done = {6:1,7:1,8:1,9:1,10:1
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Execution Constraints (contd.)

+ Q(N) memory consumption is infeasible
SRAM on a NIC is expensive!

+ Solution: introduce additional dependencies
BUT: additional dependencies=> serialization

t+ Theorem 4: Each schedule can be executed
In O(1) memory, If dummy actions are added.
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Implementation

+ Ernest Rutherford: “We don’t have the
money, so we have to think.”
No easy access to programmable NIC
working with Myricom on Myrinet
Mellanox seems to have a similar interface in
It’s next generation AP
+ We offloaded to a spare CPU core
threading model
replacing current implementation in LIDNBC
less synchronicity than round-based scheme!
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Test System

+ Odin Cluster at Indiana University
4x InfiniBand SDR
Single 288 port Mellanox switch
128 nodes
4 cores per node -> 512 cores

+ Open MPI coll component “tuned”
version 1.3

+ LIDNBC 1.0 (with NBCBench 1.0)
OFED-optimized version (uses RDMA-W)
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Blocking Collectives
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Nonblocking Collectives
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Conclusions

+ Abstract definition of group communication
easy definition of (non-)blocking for offload
universal (implements all collectives)
small overhead, maximum asynchrony

+ Enables compliler-based optimizations and

dynamic scheduling
e.g., pipelining, coalescing, memory registration

+ FIrst step towards high-level communication

expression
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Future Work

+ Investigate compiler optimizations
+ Compress schedules (reduce resource needs)

t Implement scheduler on NICs
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