Group Operation Assembly Language

- A Flexible Way to Express Collective Communication -

Torsten Hoeflerl, Christian Siebert?,
Andrew Lumsdainet

10pen Systems Lab 2NEC Laboratories Europe
Indiana University, Bloomington SanktAugustin Germany
09/25/09
ICPP 2009

Vienna, Austria

TorstenHoefler ICPP 2009 N EC
Indiana University 1 Vienna, Austria

—

Introduction

MPI as de-facto standard in parallel processing
Collective operations are integral part of MPI
Large body of research on advanced algorithms

Multiple implementations in MPI libraries:
e.g., MPICH2, MVAPICH, Open MPI

+ “Group Operations” are also used in other

environments (e.g., MRNet, Multicast)

— = = =

2 ICPP 2009, Vienna Austria N EC

TorstenHoefler, Indiana University

Motivation

+ Group Operations are a general concept
e.g., used in MPI, UPC, MRNet

+ Nonblocking Collective operations arrived
NBC will be in MPI1 3.0 (or 2.3?)

+ Most Iimplementations are hard-coded
Control-flow as static branches in source-code
Requires considerable hand-tuning
User-defined (sparse) collective operations (?)

+ Hardware offload and NBC

TorstenHoefler, Indiana University 3 ICPP 2009, Vienna Austria N EC

Broadcast Tree Examples

+ Binomial trees used in many small-message
collectives (e.g., Bcast, Reduce)

TorstenHoefler, Indiana University ICPP 2009, Vienna Austria N EC

Our Goals

+ Define a minimal language to express
collective communication to enable:

efficient representation for offload
fast and simple execution on slow PEs
good specification of advanced algorithms

execution on resource-constrained
environments (NIC)

(automatic) transformational optimizations

> ICPP 2009, Vienna Austria N EC

TorstenHoefler, Indiana University

Abstracting

+ What is the minimal set of operations
needed to perform any collective algorithm?

+ Theorem 1 states that send, receive and

(local) dependencies are sufficient to model
any collective algorithm
allows concise definition!

+ Theorem 2 states that the order requirement
IS relative to each single operation
allows optimized/adaptive execution!

TorstenHoefler, Indiana University 6 ICPP 2009, Vienna Austria N EC

—

Group Operation Assembly Language

+ Very low-level specification (compilation target)

cf. RISC assembler code

+ Translated into a machine-dependent form
cf. RISC bytecode

General Purpose .
Processing High-level Language Assembler Language Opcode

(existing) a=a+3 add $0x3,%eax 0x83,0xc0,0x03
Gr Operati
(;zcelsosei?glon High-level Description :> Assembly-like Code :>
(to be done) 0 sends to 1,2,3 0>1, 0>2, 0>3 0x06,0x01,0x01

TorstenHoefler, Indiana University 7 ICPP 2009, Vienna Austria N EC

A Binomial Tree Example

rank #0 rank #1 rank #2 rank #3 rank #4 rank #5 rank #6 rank #7

= = = ==]ocal dependencies —> communication

TorstenHoefler, Indiana University 8 ICPP 2009, Vienna Austria N EC

GOAL Language Interface

+ GOAL Language interface (Bcast example):

rank #0 { rank #1 {
send msgr,<len> to 1; r: recv<msgr,<len> from O;
send msgr,<len>to 2; | sl: send msgr,<len> to 3;

send msgr,<len>to 4; | s2: send fmsgr,<len> to 5;

rank#5 { } #

recv<msgr,<len> from 1,

} requsl->r;
requs2->r, /
()

} "o

ICPP 2009, Vienna Austria N Ec

—

Group Operation Assembly Language

+ Alternative schedule creation at runtime:

T

Library interface:

gop=GOAL_Create()
Id=GOAL_Send(sched, buf, size, dest)
Id=GOAL_Recv(sched, buf, size, dest)
GOAL_Exec(sched, func, buf, size)
GOAL_Requ(sched, src _id, tgt_id)
sched=GOAL_Compile(gop)

Internal representation reflects a

dependency DAG
enables transformational optimizations

10 ICPP 2009, Vienna Austria N EC

-+ -+ =+ —+ —+ —+

TorstenHoefler, Indiana University

Optimization possibilities

+ Adaptive execution
Possible to consider process arrival pattern
Independent ops: sent to ready hosts first

FLISTE

TorstenHoefler, Indiana University 1 ICPP 2009, Vienna Austria N EC

Optimization Possibllities (cont.)

+ Parallel execution

Schedule (DAG) allows for parallel execution
+ Multiple parallel NICs

Same scheduling issues as for multicore task
libraries (TBB, Cilk, OpenMP 3.0)

+ Static schedule (compiler) optimization
e.g., architecture-dependent pipelining

+ Scheduler runs in thread or hardware

Offload to spare CPU core
Offload to NIC (same GOAL specification)

12 ICPP 2009, Vienna Austria N EC

TorstenHoefler, Indiana University

Advanced Example - Dissemination

rank #0 rank #1 rank #2 rank #3 rank #4 rank #5

1
-— e e e e e e e e e e e e e e - -

1 1
| o cn e e e e m e e e e e e e e e e e - -

————

S | e | s | Cmwes | e | e
L= <

— =

e 5 | e 5| e | e 5 | e | Creseve

local dependencies 1 communication

<= ==

TorstenHoefler, Indiana University 13 ICPP 2009, Vienna Austria N EC

—

Schedule Detalls

+ Result of GOAL assembly
Optimized for each architecture
+ Should not lose flexibility
Represents dependency/execution graph
+ Our machine-dependent representation:
We propose binary schedule

Linear memory layout (cache/pre-fetch friendly)
Executor only 98 SLOC C code in LIbNBC

Compression possible (not in this work)

TorstenHoefler, Indiana University 14 ICPP 2009, Vienna Austria N EC

Execution Constraints

+ How much memory do we need to execute a

schedule?

We can use a sliding window (hold only parts of
the schedule in a scratchpad memory (NIC))
Theorem 3: A schedule of length N can be

executed with O(V) additional memory using a
constant-size window.

it's actually also X(N) — ©(N) see:

sliding window

_>

done = {6:1,7:1,8:1,9:1,10:1

TorstenHoefler, Indiana University

WYERS 0 e e 0 o o 6 ° o @
AP,
ANy
A
== =4
=)< =|C
ENZ NS
@ g U\P\«'ﬁ "ﬁ"
MbGoohh

ICPP 2009, Vienna Austria N EC

Execution Constraints (contd.)

+ Q(N) memory consumption is infeasible
SRAM on a NIC is expensive!

+ Solution: introduce additional dependencies
BUT: additional dependencies=> serialization

t+ Theorem 4: Each schedule can be executed
In O(1) memory, If dummy actions are added.

< <
O VA ROk e Wi L SR e

16 ICPP 2009, Vienna Austria N EC

TorstenHoefler, Indiana University

—

Implementation

+ Ernest Rutherford: “We don’t have the
money, so we have to think.”
No easy access to programmable NIC
working with Myricom on Myrinet
Mellanox seems to have a similar interface in
It’s next generation AP
+ We offloaded to a spare CPU core
threading model
replacing current implementation in LIDNBC
less synchronicity than round-based scheme!

17 ICPP 2009, Vienna Austria N EC

TorstenHoefler, Indiana University

—

Test System

+ Odin Cluster at Indiana University
4x InfiniBand SDR
Single 288 port Mellanox switch
128 nodes
4 cores per node -> 512 cores

+ Open MPI coll component “tuned”
version 1.3

+ LIDNBC 1.0 (with NBCBench 1.0)
OFED-optimized version (uses RDMA-W)

18 ICPP 2009, Vienna Austria N EC

TorstenHoefler, Indiana University

Blocking Collectives

2500

No performance penalty!
2000 [L . “““‘\‘\““ﬂlu-‘ﬁh:m

8
&
B
oo
R
1 500 o 3
Ky
&
&
9]

Latency in Microseconds

1000
500 L _ Open MPI (P=256) —— _
GOP in LIbNBC (P=256) -3
Open MP| (P=512) %
o | GOPinLibNBC (P=512) &
1 4 16 64 256 1024

Datasize in Bytes

TorstenHoefler, Indiana University 19 ICPP 2009, Vienna Austria N EC

Nonblocking Collectives

00 ! L L ! L L L

° LibNBC 1.0 Overhead —+—
GOP Overhead -3¢ 4

500 GOP (separate thread) Overhead %>~

400 |
300 £

200

100 |

CPU Overhead in Microseconds

1 4 16 64 256 1024
Datasize in Bytes

TorstenHoefler, Indiana University 20 ICPP 2009, Vienna Austria N EC

Conclusions

+ Abstract definition of group communication
easy definition of (non-)blocking for offload
universal (implements all collectives)
small overhead, maximum asynchrony

+ Enables compliler-based optimizations and

dynamic scheduling
e.g., pipelining, coalescing, memory registration

+ FIrst step towards high-level communication

expression

TorstenHoefler, Indiana University 21 ICPP 2009, Vienna Austria N EC

Future Work

+ Investigate compiler optimizations
+ Compress schedules (reduce resource needs)

t Implement scheduler on NICs

ICPP 2009, Vienna Austria N EC

TorstenHoefler, Indiana University

