
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER, AMNON BARAK, AMNON SHILOH, ZVI DREZNER

Corrected Gossip Algorithms for Fast Reliable Broadcast
on Unreliable Systems

spcl.inf.ethz.ch

@spcl_eth

▪ The number of components grows

▪ More and more transistors used

▪ But also more racks, cabinets, cables, power supplies, etc.

▪ Everything at a nearly constant reliability per part

▪ Things will fail!

▪ Wang et al., 2010: “Peta-scale systems: MTBF 1.25 hours”

▪ Brightwell et al., 2011: “Next generation systems must be designed
to handle failures without interrupting the workloads on the system
or crippling the efficiency of the resource.”

Checkpoint/restart will take longer MTBF!

▪ We need to enable applications to survive failures

▪ … to reach Petascale Exascale!

▪ Like they did for decades in distributed systems!

2

Failures in large-scale computing system

spcl.inf.ethz.ch

@spcl_eth

▪ Loosely consistent systems based on gossip

▪ Not all nodes always up to date

▪ Sometimes eventual consistency

▪ Weak ordering guarantees

▪ Hard to control in general but may work well (e.g., load balancing)

▪ Strongly consistent systems based on atomic broadcast/consensus

▪ Ordering guaranteed

▪ Can survive up to k node failures, latency of k

▪ Very limited in scalability

Check our work on AllConcur at HPDC’17 though!

▪ Usually low performance (limited to management tasks)

▪ High-performance systems are specialized

▪ FARM – Fast Remote Memory (consistent FT database)

▪ Corrected Gossip for group communications (this paper)

3

Distributed systems scenarios

spcl.inf.ethz.ch

@spcl_eth

▪ Gossip?

▪ If root or message received: send to random other node until some global time expires

▪ Proven to be very effective

▪ Not strongly consistent 

▪ Nice theory

needs 1.64 log2 n rounds to reach all w.h.p.

▪ But for N=1000

17 rounds only color all nodes 95% of the time

▪ Very problematic for BSP-style applications

4

Specialized to HPC? Let’s start with the simplest operation - broadcast

0 1 2 3 n-2 n-1…

0 1 2 3 n-2 n-1…

0 1 2 3 n-2 n-1

21 3 n-2 n-1

Where’s my
bcast?

21 3 n-2 n-1

…

…

…
What’s up

with rank 0?

MPI_Bcast

MPI_Bcast

Compute

MPI_Reduce

spcl.inf.ethz.ch

@spcl_eth

▪ Uses a dynamic tree, each message contains information about children at next levels

▪ Children propagate back to root, relying on local failure-detectors

▪ Complex tree rebuild protocol

▪ Root failure results in bcast never delivered

▪ At least 2 log2 n depth!

5

But how does FT-MPICH do this? Buntinas’ FT broadcast

0

1 2

3 4 5 6

spcl.inf.ethz.ch

@spcl_eth

▪ Use fixed graph, send along redundant edges

▪ Binomial graphs: each node sends to and receives from log2 n neighbors

▪ Can survive up to log2 n worst-case node failures

▪ In practice much more (not worst-case)

6

But how does FT-OpenMPI do this? Binomial graph broadcast

6

57

4

3

2

1

0

spcl.inf.ethz.ch

@spcl_eth

How to beat these algorithms?

▪ The power of randomness: gossip but not just gossip!

▪ Combine the probabilistic gossip protocol with a deterministic correction protocol

▪ But what is a fault-tolerant broadcast? Root failures, arbitrary failures?

▪ Assuming fail-stop, four criteria need to be fulfilled:

1. Integrity (all received messages have been sent)

2. No duplicates (each sent message is received only once)

3. Nonfaulty liveness (messages from a live node are received by all live nodes)

4. Faulty liveness (messages sent from a failed node are either received by all or none live nodes)

▪ We relax 3+4 a bit: three levels of consistency

1. Not consistent (we provide an improvement over normal gossiping)

2. Nearly consistent (assuming no nodes fail during the correction phase, practical assumption)

3. Fully consistent (any failures allowed)

7

Corrected gossip turns Monte Carlo style gossiping algorithms into Las Vegas style deterministic algorithms!

spcl.inf.ethz.ch

@spcl_eth

▪ Not consistent, works w.h.p. --- let’s first consider just gossiping

8

First algorithm: OCG (Opportunistic Corrected Gossip)

6

57

4

3

2

1

0

Are all these redundant
messages efficient?

spcl.inf.ethz.ch

@spcl_eth

9

First algorithm: OCG (Opportunistic Corrected Gossip)

Number of reached nodes

Optimal deterministic
Fibonacci tree

spcl.inf.ethz.ch

@spcl_eth

▪ OCG main idea: run gossip for a while and then switch to a ring-correction protocol

▪ Every node that received a message sends it to (rank + 1) % nranks

▪ Each message may be received twice

▪ But this depends on when we switch! But what is the longest uncolored chain?
10

First algorithm: OCG (Opportunistic Corrected Gossip)

6

57

4

3

2

1

0

spcl.inf.ethz.ch

@spcl_eth

11

The longest uncolored chain!

99% probable
longest uncolored

chain

spcl.inf.ethz.ch

@spcl_eth

▪ When to switch from gossip to correction?

▪ Well, when the expected number of correction steps is small and gossip is inefficient

▪ We can bound the probability of a longest chain of length k

▪ In terms of the LogP parameters, T (gossip time), and N (nranks)

12

First algorithm: OCG (Opportunistic Corrected Gossip)

The optimal time
to switch

depends on L, O,
and N

spcl.inf.ethz.ch

@spcl_eth

▪ OCG is more efficient than gossip but does not guarantee that all nodes are reached (even w/o failures)

▪ So we need to check that they were actually reached!

13

OCG Consistency

6

57

4

3

2

1

0

Where’s my
bcast?

spcl.inf.ethz.ch

@spcl_eth

▪ CCG sends to the next node until it sent to a node it received from (i.e., knows that node was alive!)

▪ Since the node it received from also sent, it “knows” that all other nodes have been covered!

▪ CCG guarantees that all nodes are reached unless a node dies in the middle of the correction phase!

▪ And another node assumes it finished its job! 14

Second algorithm: CCG (Checked Corrected Gossip)

6

57

4

3

2

1

0

spcl.inf.ethz.ch

@spcl_eth

▪ When to switch from gossip to correction?

▪ A bit later than OCG

15

Second algorithm: CCG (Checked Corrected Gossip)

spcl.inf.ethz.ch

@spcl_eth

▪ FCG can protect from f failures – similar to CCG but instead of aborting to send when heard from one, it
waits to hear from f+1 other nodes!

▪ So any f nodes can fail and it will still succeed (keep sending)

▪ Wait, what if there are less than f+1 nodes reached during gossip and they somehow die in the middle of
the protocol?

▪ So we need to involve the non-gossip-colored nodes

▪ They will wait to hear from a gossip-colored nodes to exit

▪ If no such exit signal comes within a timeout period, panic!

▪ In panic mode, send to every other node

▪ Every node that receives panic messages also panics

▪ This guarantees consistency (at a high cost)

▪ Panic mode is extremely unlikely in practice (much less likely than the failing of binomial graphs)

▪ Likelihood can be reduced arbitrarily with gossiping time!

▪ So panic is just a theoretical concern (to proof correctness)
16

Third algorithm: FCG (Failure-proof Corrected Gossip)

spcl.inf.ethz.ch

@spcl_eth

▪ Why the ring topology?

▪ One could choose different topologies (e.g., broadcast trees), we did not find a better practical one

▪ This seems to be an interesting research topic

▪ Optimization: bidirectional

▪ In fact, all our algorithms send backwards and forward along the ring

We skipped it to simplify the explanation

▪ Buys a factor of two, very practical (very impactful for CCG/FCG)

▪ Does the principle generalize

▪ We believe so, more algorithms to come!

▪ Both the binomial graphs and FCG require to pick an f, is there a total consistency?

▪ Only if f=N-2, which is not practical

▪ Yet, both algorithms can be configured for an arbitrarily high success probability!

17

Observations and Optimizations

spcl.inf.ethz.ch

@spcl_eth

▪ TiTech machine, published failure logs

▪ MTBF = 18304 hours

▪ Assume 12 hour run on 4096 nodes = 2.69 failures

▪ We compare all algorithms and report

1. Expected latency

2. Expected work

3. Expected inconsistency

For CCG/OCG/FCG, we simulate until the

nonparameric CI was within 2% of the median

18

Case study: TSUBAME 2.0

Buntinas’ Tree

Binomial Graphs

Gossip

spcl.inf.ethz.ch

@spcl_eth

19

Scaling – Without failures

spcl.inf.ethz.ch

@spcl_eth

20

Scaling – With failures (expected for 12 hours on TSUBAME 2.0)

spcl.inf.ethz.ch

@spcl_eth

▪ New principle to implement fault-tolerant group communications

▪ Combines randomness and determinism – Las Vegas style algorithms

▪ Three versions with growing consistency

▪ Opportunistic Corrected Gossip

▪ Checked Corrected Gossip

▪ Failure-proof Corrected Gossip

▪ Analytic models to selecting parameters

▪ Fast to compute gossiping time

▪ Now we need to see if it’s practical

▪ May need some hardware support

In a trivial implementation, wasted o dominate!

21

Summary and Conclusions

Amnon Barak, Amnon Shiloh

Zvi Drezner

