L))

Check for
updates

Demystifying Graph Databases: Analysis and Taxonomy
of Data Organization, System Designs, and Graph Queries

MACIEJ BESTA, ROBERT GERSTENBERGER, and EMANUEL PETER, Department of
Computer Science, ETH Zurich, Switzerland

MARC FISCHER, PRODYNA (Schweiz) AG, Switzerland

MICHAL PODSTAWSKI, Future Processing, Poland

CLAUDE BARTHELS, GUSTAVO ALONSO, and TORSTEN HOEFLER, Department of

Computer Science, ETH Zurich, Switzerland

Numerous irregular graph datasets, for example social networks or web graphs, may contain even trillions
of edges. Often, their structure changes over time and they have domain-specific rich data associated with
vertices and edges. Graph database systems such as Neo4j enable storing, processing, and analyzing such
large, evolving, and rich datasets. Due to the sheer size and irregularity of such datasets, these systems face
unique design challenges. To facilitate the understanding of this emerging domain, we present the first survey
and taxonomy of graph database systems. We focus on identifying and analyzing fundamental categories
of these systems (e.g., document stores, tuple stores, native graph database systems, or object-oriented
systems), the associated graph models (e.g., Resource Description Framework or Labeled Property Graph),
data organization techniques (e.g., storing graph data in indexing structures or dividing data into records),
and different aspects of data distribution and query execution (e.g., support for sharding and Atomicity,
Consistency, Isolation, Durability). Fifty-one graph database systems are presented and compared, including
Neo4j, OrientDB, and Virtuoso. We outline graph database queries and relationships with associated domains
(NoSQL stores, graph streaming, and dynamic graph algorithms). Finally, we outline future research and
engineering challenges related to graph databases.

CCS Concepts: « General and reference — Surveys and overviews; « Information systems — Data
management systems; Graph-based database models; Data structures; DBMS engine architectures;
Database query processing; Parallel and distributed DBMSs; Database design and models; Distributed
database transactions; « Theory of computation — Data modeling; Data structures and algorithms for data
management; Distributed algorithms; « Computer systems organization — Distributed architectures;

Additional Key Words and Phrases: Graphs, Graph Databases, NoSQL Stores, Graph Database Management
Systems, Graph Models, Data Layout, Graph Queries, Graph Transactions, Graph Representations, RDF, La-
beled Property Graph, Triple Stores, Key-Value Stores, RDBMS, Wide-Column Stores, Document Stores

Authors’ addresses: M. Besta, R. Gerstenberger, E. Peter, C. Barthels, and T. Hoefler, ETH Zirich, Institut fiir Comput-
ing Platforms, OAT S 17, Andreasstrasse 5, 8092 Zirich, Switzerland; emails: maciej.besta@inf.ethz.ch, gerstenberger.
robert@gmail.com, peterem@student.ethz.ch, claudeb@inf.ethz.ch, torsten.hoefler@inf.ethz.ch; G. Alonso, ETH Zirich,
Dep. of Computer Science, Institut fiir Computing Platforms, STF J 420, Stampfenbachstrasse 114, 8092 Ziirich,
Switzerland; email: alonso@inf.ethz.ch; M. Fischer, PRODYNA (Schweiz) AG, Grosspeteranlage 29, 4052 Basel; email:
marc.fischer@prodyna.com; M. Podstawski, Future Processing, Bojkowska 37a, 44-100 Gliwice; email: mpodstawski@
gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2023/09-ART31 $15.00

https://doi.org/10.1145/3604932

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31

https://orcid.org/0000-0002-6550-7916
https://orcid.org/0009-0003-3129-4689
https://orcid.org/0000-0002-2914-1777
https://orcid.org/0009-0001-6394-3490
https://orcid.org/0000-0003-1222-6894
https://orcid.org/0009-0000-8518-8468
https://orcid.org/0000-0002-4396-6695
https://orcid.org/0000-0002-1333-9797
mailto:permissions@acm.org
https://doi.org/10.1145/3604932
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604932&domain=pdf&date_stamp=2023-09-15

31:2 M. Besta et al.

ACM Reference format:

Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michal Podstawski, Claude Barthels, Gus-
tavo Alonso, and Torsten Hoefler. 2023. Demystifying Graph Databases: Analysis and Taxonomy of Data
Organization, System Designs, and Graph Queries. ACM Comput. Surv. 56, 2, Article 31 (September 2023),
40 pages.

https://doi.org/10.1145/3604932

1 INTRODUCTION

Graph processing is behind numerous problems in computing, for example in medicine, machine
learning, computational sciences, and others [113, 135]. Graph algorithms are inherently difficult
to design because of challenges such as large sizes of processed graphs, little locality, or irregular
communication [135]. The difficulties are increased by the fact that many such graphs are also
dynamic (their structure changes over time) and have rich data, for example arbitrary properties
or labels, associated with vertices and edges.

Graph databases (GDBs) such as Neo4j [175] emerged to enable storing, processing, and an-
alyzing large, evolving, and rich graph datasets. Graph databases face unique challenges due to
overall properties of irregular graph computations combined with the demand for low latency and
high throughput of graph queries that can be both local (i.e., accessing or modifying a small part
of the graph, for example a single edge) and global (i.e., accessing or modifying a large part of the
graph, for example all the edges). Many of these challenges belong to the following areas: “general
design” (i.e., what is the most advantageous general structure of a graph database engine), “data
models and organization” (i.e., how to model and store the underlying graph dataset), “data dis-
tribution” (i.e., whether and how to distribute the data across multiple servers), and “transactions
and queries” (i.e., how to query the underlying graph dataset to extract useful information). This
distinction is illustrated in Figure 1. In this work, we present the first survey and taxonomy on
these system aspects of graph databases.

In general, we provide the following contributions:

e We provide the first taxonomy of graph databases,' identifying and analyzing key dimen-
sions in the design of graph database systems.

e We use our taxonomy to survey, categorize, and compare 51 graph database systems.

e We discuss in detail the design of selected graph databases.

e We outline related domains, such as queries and workloads in graph databases.

e We discuss future challenges in the design of graph databases.

1.1 Related Surveys

There exist several surveys dedicated to the theory of graph databases. In 2008, Angles et al. [9]
described the history of graph databases and, in particular, the used data models, data structures,
query languages, and integrity constraints. In 2017, Angles et al. [8] analyzed in more detail query
languages for graph databases, taking both an edge-labeled and a property graph model into ac-
count and studying queries such as graph pattern matching and navigational expressions. In 2018,
Angles and Gutierrez provided an overview [10] of basic notions in the graph database landscape.
While being related to our work, it is largely orthogonal, focusing on historical developments

ILists of graph databases can be found at
http://nosql-database.org

https://database.guide
https://www.g2.com/categories/graph-databases
https://www.predictiveanalyticstoday.com/top-graph-databases
https://db-engines.com/en/ranking/graph+dbms.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://doi.org/10.1145/3604932
http://nosql-database.org
https://database.guide
https://www.g2.com/categories/graph-databases
https://www.predictiveanalyticstoday.com/top-graph-databases
https://db-engines.com/en/ranking/graph+dbms

Survey and Taxonomy of Graph Databases 31:3
Wide- Key-
- RDBMSh column value Document Query Bei
0[§gga7p) S stores stores stores (§ 6.5) it organization
: (8§ 6.6) (8§ 6.4) (§5.3) (§5.2)
Tuple
Object- stores (§ 6.3)
d%rtiaeggggs fDeingn ddetails h Taxonomy and Sﬁ?ﬁ%%%
of selected grap RDF stores key dimensions 551)
(§6.8) databases (§ 6) (5 6.2) Y (5 5)
LPG graph
stores (§ 6.9)
Gra ph Queries and
Related databases workloads (§ 4)
domains
Corr?gres%ing covered
ra atabases in more
r detail in Graph databases Non-graph
different vs. other classes of data models
History of SHIVEYS graph systems (§ 2) Data models (§ 3) (§3.4)
graph databases
Integrity
constraints
Data models in graph
in graph databases databases
ao . This symbol indicates C?:Cﬁ‘%t:t%l
Query languages that a given category Graph structure m%de?ls 533
in graph databases Graph Graph is surveyed in another representation o
aD analytics streaming publication (§3.2)

Fig. 1. The illustration of the considered areas of graph databases.

(which we exclude), details of many graph database models, and query languages (we only focus
on the ones routinely supported by existing graph database systems), and it only sketches at a
very high level a few selected graph database systems. Our work, instead, focuses primarily on
graph database systems and the details of their design and analyzes in depth all other aspects
(graph data models, query languages, queries) through the perspective of being supported in these
systems. Also in 2018, Bonifati et al. [41] provided an in-depth investigation into querying graphs,
focusing on numerous aspects of query specification and execution. Moreover, there are surveys
that focus on NoSQL stores [60, 83, 96] and Resource Description Framework (RDF) [161].
There is no survey dedicated to the systems aspects of graph databases, except for several brief
papers that cover small parts of the domain (brief descriptions of a few systems, concepts, or tech-
niques [116, 118, 126, 164, 167], a survey of graph processing ubiquity [180], and performance
evaluations of a few systems [125, 142, 203]).

2 GRAPH DATABASES AND OTHER CLASSES OF GRAPH SYSTEMS

Graph database systems are described in the literature as “systems specifically designed for
managing graph-like data following the basic principles of database systems, i.e., persistent data
storage, physical/logical data independence, data integrity, and consistency” [10]. However, other
systems can also store and process dynamic graphs. We now briefly discuss relations to three
such classes: other classes of databases, streaming graph frameworks, and general static graph
processing systems.

2.1 Graph Databases vs. NoSQL Stores and Other Databases

NoSQL stores address various deficiencies of relational database systems, such as little support
for flexible data models [60]. Graph databases such as Neo4j can be seen as one particular type of
NoSQL stores; these systems are sometimes referred to as “native” graph databases [175]. Other

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:4 M. Besta et al.

Table 1. The Most Relevant Symbols and Abbreviations Used in This Work

G A graph G = (V, E) where V is a set of vertices and E is a set of edges.

n,m The count of vertices and edges in a graph G; |V| = n, |E| = m.

d.d The average degree and the maximum degree in a given graph, respectively.

P(S) =25 The power set of S: a set that contains all possible subsets of S.

AM, M The Adjacency Matrix representation. M € {0, 1}, My, , =1 & (u,v) € E.

AL, Ay The Adjacency List representation and the adjacency list of a vertex u; v € A, © (u,v) € E.

LPG,RDF Labeled Property Graph (Section 3.3.2) and Resource Description Framework (Section 3.3.4).
KV, RDBMS Key-Value store (Section 6.4) and Relational Database Management Systems (Section 6.7).
OODBMS Object-Oriented Database Management Systems (Section 6.8).

OLTP, OLAP Online Transaction Processing (Section 4.1) and Online Analytics Processing (Section 4.1).
ACID Transaction guarantees (Atomicity, Consistency, Isolation, Durability).

types of NoSQL systems include wide-column stores, document stores, and general key-value (KV)
stores [60]. We focus on both “native” graph databases such as Neo4j [175] and on other systems
used specifically for maintaining graphs (relational databases, object-oriented databases, NoSQL,
and others).

2.2 Graph Databases vs. Graph Streaming Frameworks

In graph streaming [30], the input graph is passed as a stream of updates, allowing to add and re-
move edges in a simple way. Graph databases are related to graph streaming in that they face graph
updates of various types. Still, they usually deal with complex graph models (such as the Labeled
Property Graph (LPG) [8] or Resource Description Framework [57]) where both vertices and
edges may be of different types and may be associated with arbitrary properties. Contrarily, graph
streaming frameworks focus on simple graph models where edges or vertices may have weights
and, in some cases, simple additional properties such as timestamps. Moreover, challenges in the
design of graph databases include transactional support, persistence, physical/logical data indepen-
dence, data integrity, or consistency; these topics are little related to graph streaming frameworks.

2.3 Graph Databases vs. Static Graph Processing Systems

A lot of effort has been dedicated to static graph analytics [27, 65, 97, 143, 186, 209]. The key differ-
ences to graph databases are that graph processing systems usually focus on graphs that are static
and simple, i.e., do not have rich attached data such as labels or key-value pairs (details in Sec-
tion 3.3). Moreover, static graph processing systems do not focus on topics such as transactions,
persistence, physical/logical data independence, data integrity, or consistency.

Graph streaming frameworks and static graph processing systems are not covered in this work.

3 GRAPH DATA MODELS IN THE LANDSCAPE OF GRAPH DATABASES

We start with data models. This includes conceptual graph models and representations and non-
graph models used in graph databases. Key symbols and abbreviations are shown in Table 1.

3.1 Simple Graph Model

We start with a simple graph model that is a basis for more complex and richer conceptual graph
models used in graph databases. A graph G can be modeled as a tuple (V, E), where V is a set of
vertices and E C V XV is a set of edges. G = (V, E) can also be denoted as G(V, E). We have |V| = n
and |E| = m. For a directed G, an edge e = (u,v) € E is a tuple of two vertices, where u is the
out-vertex (also called “source”) and v is the in-vertex (also called “destination”). If G is undirected,
then an edge e = {u, v} € E is a set of two vertices. Finally, a weighted graph G is modeled with a
triple (V, E, w); w : E — R maps edges to weights.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:5

:Person :Person
; :knows
name = Alice — = - name = Bob
age = 21 since = 09.08.2007 age = 24
:hasCreator :hasCreator
:Message :(I:Vlessage
:Post :Comment
title = Holidays - :replyof o
text = We had... text = Wow! ...

Fig. 2. The illustration of an example LPG. Vertices and edges can have labels (bold, prefixed with colon) and
properties (key = value). We present a subgraph of a social network, where a person can know other persons,
post messages, and comment on others’ messages.

3.2 Fundamental Representations of Graph Structure

We also summarize two fundamental ways to represent the structure of connections between ver-
tices. Two common such graph representations of vertex neighborhoods are the adjacency matrix
format (AM) and the adjacency list format (AL).

In the AM format, a matrix M € {0, 1}™" determines the connectivity of vertices: M, , = 1 &
(u,v) € E. In the AL format, each vertex u has an associated adjacency list A,. This adjacency list
maintains the IDs of all vertices adjacent to u. Each adjacency list is often stored as a contiguous
array of vertex IDs. We have v € A, & (u,v) € E.

AM uses O (n?®) space and can check connectivity of two vertices in O (1) time. AL requires
O (n + m) space and it can check connectivity in O (JA,]) € O(ci) time. The AL or AM representa-
tions are used to maintain the graph structure (i.e., neighborhoods of vertices).

3.3 Conceptual Graph Data Models Used in Graph Databases

We now introduce the conceptual graph models used by the surveyed systems; these models
extend the simple graph model from Section 3.1. A simple graph model is often used in graph
frameworks such as Pregel [136] or STINGER [70]. However, it is not commonly used with graph
databases.

3.3.1 Hypergraph Model. A hypergraph H generalizes a simple graph: Any of its edges can join
any number of vertices. Formally, a hypergraph is also modeled as a tuple (V, E) with V being a set
of vertices. E is defined as E C (P (V) \ 0), and it contains hyperedges, non-empty subsets of V.

Hypergraphs are rarely used in graph databases and graph processing systems. In this survey,
we describe a system called HyperGraphDB (Section 6.4.2) that focuses on storing and querying
hypergraphs.

3.3.2 Labeled Property Graph Model. The classical graph model, a tuple G = (V, E), is adequate
for many problems such as computing vertex centralities [42]. However, it is not rich enough to
model various real-world problems. This is why graph databases often use the LPG, sometimes
simply called a property graph [8, 41]. In LPG, one augments the simple graph model (V, E) with
labels that define different subsets (or classes) of vertices and edges. Furthermore, every vertex
and edge can have any number of properties [41] (often also called attributes). A property is a
pair (key,value), where key identifies a property and value is the corresponding value of this
property [41]. Formally, an LPG is defined as a tuple (V, E, L, ly, Ig, K, W, py, pr) where L is the set
of labels. Iy : V +— P(L) and Ig : E +— P(L) are labeling functions. Note that (L) is the power
set of L, denoting all the possible subsets of L. Thus, each vertex and edge is mapped to a subset of
labels. Next, a vertex as well as an edge can be associated with any number of properties. We model

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:6 M. Besta et al.

aproperty as a key-value pair p = (key, value), where key € K and value € W. K and W are sets of
all possible keys and values. Finally, py (1) denotes the set of property key-value pairs of the vertex
u, and pg(e) denotes the set of property key—-value pairs of the edge e. An example LPG is in Figure 2.
Note that, in LPGs, E may be a multi-set (i.e., there may be more than a single edge between vertices,
even having identical labels and/or key—value sets). All systems considered in this work use some
variant of the LPG, with the exception of RDF systems or when explicitly discussed.

3.3.3 Variants of Labeled Property Graph Model. Several databases support variants of LPG.
First, Neo4j [175] (a graph database described in detail in Section 6.9.1) supports an arbitrary num-
ber of labels for vertices. However, it only allows for one label (called the edge-type) per edge. Next,
ArangoDB [16] (a graph database described in detail in Section 6.5.2) only allows for one label per
vertex (vertex-type) and one label per edge (edge-type). This facilitates the separation of vertices
and edges into different document collections. Moreover, edge-labeled graphs [8] do not allow for
any properties and use labels in a restricted way. Specifically, only edges have labels, and each edge
has exactly one label. Formally, G = (V, E, L), where V is the set of vertices and E C VX LXV is the
set of edges. Note that this definition enables two vertices to be connected by multiple edges with
different labels. Finally, some effort was dedicated to LPG variants that facilitate storing historical
graph data [50].

3.3.4 Resource Description Framework. The RDF [57] is a collection of specifications for repre-
senting information. It was introduced by the World Wide Web Consortium in 1999, and the latest
version (1.1) of the RDF specification was published in 2014. Its goal is to enable a simple format
that allows for easy data exchange between different formats of data. It is especially useful as a
description of irregularly connected data. The core part of the RDF model is a collection of triples.
Each triple consists of a subject, a predicate, and an object. Thus, RDF databases are also often called
triple stores (or triplestores). Subjects can either be identifiers (called Uniform Resource Identi-
fiers (URIs)) or blank nodes (which are dummy identifiers for internal use). Objects can be URIs,
blank nodes, or literals (which are simple values). With triples, one can connect identifiers with
identifiers or identifiers with literals. The connections are named with another URI (the predicate).
RDF triples can be formally described as

(s,p,0) € (URI U blank) x (URI) X (URI U blank U literal),

where s represents a subject, p models a predicate, and o represents an object. URI is a set of
Uniform Resource Identifiers; blank is a set of blank node identifiers that substitute internally
URISs to allow for more complex data structures; literal is a set of literal values [103, 161].

3.3.5 Transformations between LPG and RDF. To represent a Labeled Property Graph in the
RDF model, LPG vertices are mapped to URIs (@), and then RDF triples are used to link those
vertices with their LPG properties by representing a property key and a property value with, re-
spectively, an RDF predicate and an RDF object (). For example, for a vertex with an ID vertex-id
and a corresponding property with a key property-key and a value property-value, one creates an
RDF triple (vertex-id, property-key, property-value). Similarly, one can represent edges from the
LPG graph model in the RDF model by giving each edge the URI status (@), and by linking edge
properties with specific edges analogously to vertices (edge-id, property-key, property-value) (®).
Then, one has to use two triples to connect each edge to any of its adjacent vertices (). Finally,
LPG labels can also be transformed into RDF triples in a way similar to that of properties [112]
by creating RDF triples for vertices (®) and edges (@) such that the predicate becomes a “label”
URI and contains the string name of this label. Figure 3 shows an example of transforming an LPG

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:7

:Person 9\

name = Alice 21
age = 21

:knows
since = 09.08.2007

Alice 09.08.2007 Bob

24

:Person
name = Bob
age = 24

LPG graph

RDF graph

Fig. 3. Comparison of an LPG and an RDF graph: a transformation from LPG to RDF. “V-ID,” “E-ID,” “age,’

“name,” “type,” “from,” “to,” “since,” and “label” are RDF URIs. Numbers in black circles refer to transformation
steps in Section 3.3.5.

nathe = Afce 1 Alice 09.08.2007 Bob .,

agel= 21

name
:knows since age
since = 09.08.2007
to

N B brpe

age = 24 edge vertex

LPG graph RDF graph

Fig. 4. Comparison of an LPG and an RDF graph: a transformation from LPG to RDF, given vertices and

9 9 <

edges have only one label. “Person/V-ID,” “knows/E-ID,” “age,” “name,” “type,” “from,” “to,” and “since” are
RDF URIs.

graph into RDF triples. More details on transformations between LPG and RDF are provided by
Hartig [101].

If all vertices and edges only have one label, then one can omit the triples for labels and store the
label (e.g., “Person”) together with the vertex or the edge name (“V-ID” and “E-ID”) in the identifier.
We illustrate a corresponding example in Figure 4.

Transforming RDF data into the LPG model is more complex, since RDF predicates, which would
normally be translated into edges, are URIs. Thus, while deriving an LPG graph from an RDF graph,
one must map edges to vertices and link such vertices; otherwise, the resulting LPG graph may
be disconnected. There are several schemes for such an RDF to LPG transformation, for example
deriving an LPG graph that is bipartite at the cost of an increased graph size [103]. Details and
examples are provided in a report by Hayes [103].

3.4 Non-Graph Data Models and Storage Schemes Used in Graph Databases

In addition to the conceptual graph models, graph databases also often incorporate different
storage schemes and data models that do not target specifically graphs but are used in various
systems to model and store graphs. These models include collections of key—value pairs, documents,
and tuples (used in different types of NoSQL stores); relations and tables (used in traditional
relational databases); and objects (used in object-oriented databases). Different details of these
models and the database systems based on them are described in other surveys, for example in a
recent publication on NoSQL stores by Davoudian et al. [60]. Thus, we omit extensive discussions
and instead offer brief summaries, focusing on how they are used to model or represent graphs.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:8 M. Besta et al.

3.4.1 Collection of Key—Value Pairs. Key—value stores are the simplest NoSQL stores [60]. Here
the data are stored as a collection of key—value pairs, with the focus on high-performance and
highly scalable lookups based on keys. The exact form of both keys and values depends on a specific
system or an application. Keys can be simple (e.g., an URI or a hash) or structured. Values are often
encoded as byte arrays (i.e., the structure of values is usually schemaless). However, a key-value
store can also impose some additional data layout, structuring the schemaless values [60].

Due to the general nature of key-value stores, there can be many ways of representing a graph
as a collection of KV values. We describe several concrete example systems [62, 110, 172, 184]
in Section 6.4. For example, one can use vertex labels as keys and encode the neighborhoods of
vertices as values.

3.4.2 Collection of Documents. A document is a fundamental storage unit in a class of NoSQL
databases called document stores [60]. These documents are stored in collections. Multiple col-
lections of documents constitute a database. A document is encoded using a selected standard
semi-structured format, e.g., JSON [43] or XML [44]. Document stores extend key-value stores in
that a document can be seen as a value that has a certain flexible schema. This schema consists of
attributes, where each attribute has a name along with one or more values. Such a structure based
on documents with attributes allows for various value types, key—value pair storage, and recursive
data storage (attribute values can be lists or key—value dictionaries).

In all surveyed document stores [16, 46, 78, 131, 148] (Section 6.5), each vertex is stored in a vertex
document. The capability of documents to store key—value pairs is used to store vertex labels and
properties within the corresponding vertex document. The details of edge storage, however, are
system dependent: Edges can be stored in the document corresponding to the source vertex of each
edge or in the documents of the destination vertices. As documents do not impose any restriction
on what key-value pairs can be stored, vertices and edges may have different sets of properties.

3.4.3 Collection of Tuples. Tuples are a basis of NoSQL stores called tuple stores. A tuple store
generalizes an RDF store: RDF stores are restricted to triples (or, in some cases, 4-tuples, also
referred to as quads), whereas tuple stores can contain tuples of an arbitrary size. Thus, the number
of elements in a tuple is not fixed and can vary, even within a single database. Each tuple has an
ID that may also be a direct memory pointer.

A collection of tuples can model a graph in different ways. For example, one tuple of size n
can store pointers to other tuples that contain neighborhoods of vertices. The exact mapping be-
tween such tuples and graph data are specific to different databases; we describe an example [207]
in Section 6.3.

3.4.4 Collection of Tables. Tables are the basis of Relational Database Management Sys-
tems (RDBMS) [20, 55, 104]. Tables consist of rows and columns. Each row represents a single data
element, for example, a car. A single column usually defines a certain data attribute, for example the
color of a car. Some columns can define unique IDs of data elements, called primary keys. Primary
keys can be used to implement relations between data elements. A one-to-one or a one-to-many re-
lation can be implemented with a single additional column that contains the copy of a primary key
of the related data element (such primary key copy is called the foreign key). A many-to-many re-
lation can be implemented with a dedicated table containing foreign keys of related data elements.

To model a graph as a collection of tables, one can implement vertices and edges as rows in two
separate tables. Each vertex has a unique primary key that constitutes its ID. Edges can relate to
their source or destination vertices by referring to their primary keys (as foreign keys). LPG labels
and properties, as well as RDF predicates, can be modeled with additional columns [208, 211].
We present and analyze different graph database systems [21, 159] based on tables in Section 6.6
and Section 6.7.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:9

OLTP OLAP
Single vertices and edges Subgraphs, Paths, Patterns Whole graph

p 5 Prg\perty p E /.

p E
P P P (\(
%

/ E
Vertex Edge | Label \.
L
p @ v
Local queries Neighborhood queries Traversals Global graph analytics
Scope / Complexity
Interactive workloads Business Intelligence workloads Graph analytics workloads

LDBC workloads

Fig. 5. lllustration of different query scopes and their relation to other graph query taxonomy aspects, in the
context of accessing a Labeled Property Graph.

3.4.5 Collection of Objects. One can also use collections of objects in Object-Oriented Data-
base Management Systems (OODBMS) [19] to model graphs. Here data elements and their
relations are implemented as objects linked with some form of pointers. The details of modeling
graphs as objects heavily depend on specific designs. We provide details for an example system
[206] in Section 6.8.

4 QUERIES AND WORKLOADS IN THE LANDSCAPE OF GRAPH DATABASES
We describe graph database workloads.

4.1 OLAP and OLTP

First, one distinguishes between Online Transactional Processing (OLTP) and Online Ana-
lytical Processing (OLAP). OLTP queries are small, interactive, transactional, and local in scope
(i-e., they process only a small part of the graph). Examples are neighborhood queries, lookups,
inserts, deletes, and updates of single (or a few) vertices and edges. OLAP queries are usually not
processed at interactive speeds, as they are inherently complex and global in scope (i.e., they span
the whole graphs). Examples are PageRank [163] or Breadth-First Search (BFS).

Now, static graph processing systems (Section 2.3) focus on OLAP. However, many graph
databases also support a rich set of OLAP workloads. This includes Neo4j [175], Cray Graph En-
gine [173], Amazon Neptune [5], TigerGraph [200], and many others (see Tables 2-3). For example,
Neo4j provides algorithms for vertex centrality (e.g., PageRank, Betweenness Centrality, Eigenvec-
tor Centrality), community detection (e.g., Louvain, Triangle Counting, Weakly Connected Com-
ponents, and Label Propagation), graph traversals (BFS and DFS), shortest paths (e.g., Delta Step-
ping, A*), and many others. Thus, we focus on both OLTP and OLAP in the context of how they are
supported by graph databases.

4.2 Graph Queries beyond OLAP vs. OLTP

We also offer an analysis of graph queries beyond the simple distinction into OLAP and OLTP
classes. Figure 5 illustrates the queries in the context of accessing the LPG graph. We omit detailed
discussions and examples as they are provided in different associated papers (query languages
[7, 8], analytics workloads [13], benchmarks related to certain aspects [53, 133, 134], and whole
systems [6, 18, 25, 49, 75, 111, 115, 193] and surveys on system performance [66, 142]).

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:10 M. Besta et al.

4.2.1 Scopes of Graph Queries. We describe queries in the increasing order of their scope. We
focus on the LPG model, see Section 3.3.2. Figure 5 depicts the scope of graph queries.

Local Queries. Local queries involve single vertices or edges. For example, given a vertex or an
edge ID, one may want to retrieve the labels and properties of this vertex or edge. Other examples
include verifying whether a given vertex or a given edge have a given label (given the label name)
or whether they have a property of a specified type. These queries are used in social network
workloads [18, 25] (e.g., to fetch the profile information of a user) and in benchmarks [115] (e.g.,
to measure the vertex look-up time).

Neighborhood Queries. Neighborhood queries retrieve all edges adjacent to a given vertex or
the vertices adjacent to a given edge. This query can be further restricted by, for example, retrieving
only the edges with a specific label. Similarly to local queries, social networks often require a
retrieval of the friends of a given person, which results in querying the local neighborhood [18, 25].

Traversals. In a traversal query, one explores a part of the graph beyond a single neighborhood.
These queries usually start at a single vertex (or a small set of vertices) and traverse some graph
part. We call the initial vertex or the set of vertices the anchor or root of the traversal. Queries can
restrict what edges or vertices can be retrieved or traversed. As this is a common graph database
task, this query is also used in different performance benchmarks [53, 66, 115].

Global Graph Analytics. Finally, we identify global graph analytics queries, which by defini-
tion consider the whole graph (not necessarily every property but all vertices and edges). Different
benchmarks [28, 49, 66, 142] take these large-scale queries into account, since they are used in dif-
ferent fields such as threat detection [69] or computational chemistry [24]. As indicated in Tables 2
and 3, many graph databases support such queries.

4.2.2 Classes of Graph Workloads. We also outline an existing taxonomy of graph database
workloads that is provided as a part of the LDBC benchmarks [6]. LDBC is an effort by academia
and industry to establish a set of standard benchmarks for measuring the performance of graph
databases. The effort currently specifies interactive workloads, Business Intelligence workloads, and
graph analytics workloads.

Interactive Workloads. A part of LDBC called the Social Network Benchmark [75] identifies
and analyzes interactive workloads that can collectively be described as either read-only queries or
simple transactional updates. They are divided into three further categories. First, short read-only
queries start with a single graph element (e.g., a vertex) and lookup its neighbors or conduct small
traversals. Second, complex read-only queries traverse larger parts of the graph; they are used in the
LDBC benchmark to not just assess the efficiency of the data retrieval process but also the quality
of query optimizers. Finally, transactional update queries insert, modify, or remove either a single
element (e.g., a vertex), possibly together with its adjacent edges, or a single edge. This workload
tests common graph database operations such as the lookup of a friend profile in a social network,
or friendship removal.

Business Intelligence Workloads. Next, LDBC identifies Business Intelligence (BI) work-
loads [193], which fetch large data volumes, spanning large parts of a graph. Contrarily to the
interactive workloads, the BI workloads heavily use summarization and aggregation operations
such as sorting, counting, or deriving minimum, maximum, and average values. They are read-
only. The LDBC specification provides an extensive list of BI workloads that were selected so that
different performance aspects of a database are properly stressed when benchmarking.

Graph Analytics Workloads. Finally, the LDBC effort comes with a graph analytics bench-
mark [111], where six graph algorithms are proposed as a standard benchmark for a graph
analytics part of a graph database. These algorithms are Breadth-First Search, PageRank, weakly
connected components [89], community detection using label propagation [40], deriving the local
clustering coefficient [183], and computing single-source shortest paths [64].

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:11

LDBC Workloads. The LDBC interactive workloads correspond to local, neighborhood, and tra-
versals. The LDBC Business Intelligence workloads range from traversals to global graph analytics
queries. The LDBC graph analytics benchmark corresponds to global graph analytics.

4.2.3 Graph Patterns and Navigational Expressions. Angles et al. [8] inspected in detail the the-
ory of graph queries. In one identified family of graph queries, called simple graph pattern matching,
one prescribes a graph pattern (e.g., a specification of a class of subgraphs) that is then matched
to the graph maintained by the database, searching for the occurrences of this pattern. This query
can be extended with aggregation and a projection function to so-called complex graph pattern
matching. Next, path queries allow to search for paths of arbitrary distances in the graph. One can
also combine complex graph pattern matching and path queries, resulting in navigational graph
pattern matching, in which a graph pattern can be applied recursively on the parts of the path.

5 TAXONOMY OF GRAPH DATABASE SYSTEMS

We now describe how we categorize graph database systems considered in this survey. This tax-
onomy incorporates existing concepts related to graph data models (cf. Section 3) and to graph
queries (cf. Section 4). Then, other aspects of the proposed taxonomy are novel. In this section,
we describe the taxonomy in a general way. In Section 7, we analyze the taxonomy in the con-
text of specific graph database systems. The main dimensions of the taxonomy are (1) the general
backend type, (2) data organization, and (3) query execution. Figure 6 illustrates the general types
of considered databases together with certain aspects of data models and organization. Figure 7
summarizes all elements of the proposed taxonomy.

5.1 Types of Graph Database Storage Backends

We first identify general types of graph databases that primarily differ in their storage backends (e.g.,
a triple store or a document store). This facilitates further taxonomization and analysis, because
(1) the backend design has a profound impact on almost all other aspects of a graph database such
as data organization and because (2) it straightforwardly enables categorizing all considered graph
databases into a few clearly defined groups.

Some classes of systems use a certain specific backend technology, adapting this backend to stor-
ing graph data and adding a frontend to query the graph data. Examples of such systems are tuple
stores, document stores, key—value stores, wide-column stores, RDBMS, or OODBMS. Other graph
databases are designed specifically for maintaining and querying graphs; we call such systems na-
tive graph databases (or native graph stores). They are based on either the LPG or the RDF graph
data model. Finally, we consider designs called the data hubs; they enable using many different
storage backends, facilitating storing data in different formats and models.

Some of the above categories of systems fall into the domain of NoSQL stores. For example,
this includes document stores, key—value stores, or some triple stores. However, there is no strict
assignment of specific storage backends as NoSQL. For example, triple stores can also be imple-
mented as, e.g., RDBMS [60]. Figure 6 illustrates these systems; they are discussed in more detail
in Section 6.

5.2 Data Organization

In data organization, we distinguish the following taxonomy aspects: (1) graph structure represen-
tation, (2) conceptual data models, (3) indexes, (4) data distribution, and (5) common optimizations.

First, in graph structure representation, we analyze whether the graph structure is stored using
the AL or the AM representation (see Section 3.2). The graph structure representation directly
impacts the performance of queries.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:12 M. Besta et al.

Column RDBMS Row RDBMS

Vertices and edges are stored in Vertices and edges are stored in
rows of two column-oriented tables rows of two row-oriented tables
Object-Oriented DBMS Table with Table with Table with Table with
Vertices and edges are stored vertices edges vertices Edges

in Java, C#, ... language objects

o

Details of data
organization are

Different Different

Different
records records

records

Different
records

system-dependant Records forming a column § } Dashed Records forming a row
are stored contiguously re Qlﬂﬂf are stored contiguously
Examples: in memory or on disk P in memory or on disk
Objectivity memory
ThingSpan, One column can implement One column can implement

a property, a label, or an
ID (primary or forelgn key)
Example:
SAP HANA

a property, a label, or an
ID (primary or forelgn key)
Example: Oracle
Spatial and Graph

Velocity Graph

Data Hub

°o
O f : Native (Triple) Graph Store
% Combines multiple models and/or storage schemes (based on the RDF model)
() -

Subject URIs are linked to
object URIs via predicates

[0}
=
Q
Q
e«

A
Examples: Cayley InfoGrid, MarkLoglc uses . .
OpenLink Virtuoso, Stardog % i (Subj, Pred, Obj)
ones

Wide-Column Store

A vertex is stored in a row and

it is indexed by an unique ID; its
Key-Value Store properties, labels, and adjacent
Vertices and edges are encoded in edges are stored in row cells
values and indexed by keys (IDs) Key Row (vertex)

o~ Triples can
/form records

(Subj, Pred, Obj)

(Subj, Pred, Obj)

Keys One value
Y Velues often forms

: Examples:
one recor AllegroGraph,
o>l (orop | prop | prop Jedoe e

D verewedse
D verexesse ﬂ

An opaque value contains properties,
labels, adjacent vertices and edges

Engine

(brop Jedgeledse)
/

One cell contains
a key-value pair

y Native Graph Store
Examples: Titan, (based on the LPG model)
JanusGraph, DSE Graph,

Custom database systems,
optimized for graph storage
and traversal queries.

Examples: Dgraph, ¢
HyperGraphDB,
MS Graph Engine

Document Store

Vertices and edges are encoded
in documents (e.g. JSON) and
linked via pointers or document IDs
Tuple Store

ment

Vertices and edges are stored in Document qsoCNu/ XML)
D

tuples, linked via pointers or IDs
of other tuples

attr | attr | attr |
Details of data organization are

system-dependant. Adjacency
k information is explicitly maintained

“ attr to accelerate graph traversals.

Examples:
A Sparksee/DEX,

attr TigerGraph,
[attr Jater Jattr Jattr e
Memgraph,
Attributes implement A document Neo4j, PGX

properties and labels often forms
one record

Pointers
Tuples’ or IDs

pfgnet?tlir;s Division into
labels records depends
on a system

Examples: OrientDB,
ArangoDB, Azure
Cosmos DB, FaunaDB

Examples:
WhiteDB, Graphd

Fig. 6. Overview of different graph storage backends, with examples.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:13

Taxonomy of Graph Databases
System Backends

What is the general * Native (triple) store < Native (LPG) store e« Tuple store =« Document store
type of a database « Key-value store * Wide-column store + RDBMS + OODBMS
storage backend?

Data Organization
Representations Graph Models

Optimizations What representatior;s : ﬁ[’l tht Iconfceptuzal « RDF triples
What common opti- of graphs are used? daTaoasess?J ggar‘t)ed7 " LPG
mizations are used? L :

Edge Records Types of Records Linking Records Lightweight Edges

How are edges stored? What types of records How are records Is there support for
are supported? linked together? lightweight edges?

* Within vertex records « Fixed sized « With direct pointers *Yes «No

* Within edge records « Variable sized « With IDs or references

Data Distribution
istriboted moda? Data Sharding Data Replication

. LI (T .
Is data sharding TN Is data replication . Ileos
«Yes s+ No supported? supported?
How are indexes * Hashtable What are : Bgitgr:ggreﬁsgd(ﬁﬁgrxgasn
implemented? Skip list indC?);es « Structural indexes
used for?

Query Execution

What queries Can multiple Can a single query Is ACID What que * Gremlin

are supported? queries be ru7n be parallelized? supported? Ianguqagerz : gé;l)_her
concurrently? are supported? - ohat

* OLAP - OLTP o 5 « Yes (fully) » No + Other

« OLAP & OLTP +Yes «No Yes + No Y

* Yes (partially)

Fig. 7. Overview of the identified taxonomy of graph databases.

Second, we investigate what conceptual data models are supported by different graph databases.
Here we focus on the RDF and LPG models, as well as on their variants, described in Section 3.3.
The used graph model strongly influences what graph query languages can be used together with
a given system, and it also has impact on the associated data layout.

We also analyze how graph databases use indexes to accelerate accessing data. Indexes can
significantly improve the performance of GDBs, and they are widely used, for example, in RDF
systems [2, 123, 169]. Here we consider the functionality (i.e., the use case) of a given index and
how a given index is implemented.? As for the former, we identify four different index use cases:
storing the locations of vertex neighborhoods (referred to as “neighborhood indexes”); indexing
graph elements, such as vertices, that satisfy pre-specified conditions related to rich graph data

2We do not include the index information in Tables 2 and 3 because of lack of space and instead provide a detailed separate
analysis in Section 7.2.7.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:14 M. Besta et al.

(referred to as “data indexes”); storing the actual graph data; and maintaining non-graph related
data (referred to as “structural indexes”). As for the latter, we identify three fundamental data
structures used to implemented indexes: trees, skip lists, and hashtables.

We also identify whether a database can run in a distributed mode. A system is distributed or
multi-server if it can run on multiple servers (also called compute nodes) connected with a network.
In such systems, data may be replicated [84] (maintaining copies of the dataset at each server), or
they may allow for sharding [74] (data fragmentation, i.e., storing only a part of the given dataset
on one server). Replication often allows for more fault tolerance [73], and sharding reduces the
amount of used memory per node and can improve performance [73]. Gathering this information
facilitates selecting a system with the most appropriate performance properties in a given context.
For example, systems that replicate but not shard the data may offer more performance for read-
only workloads but may scale badly for particularly large graphs that would require disk spilling.

Finally, we identify common optimizations: (1) dividing data into records, (2) lightweight edges,
and (3) linking records with direct pointers.

Dividing Data into Records. Graph databases usually organize data into small units called
records. One record contains information about a certain single entity (e.g., a person); this informa-
tion is organized into specified logical fields (a name, a surname, etc.). A certain number of records
is often kept together in one contiguous block in memory or disk to enhance data access locality.

Enabling Lightweight Edges. Some systems (e.g., OrientDB) allow edges without labels or
properties to be stored as lightweight edges. Such edges are stored in the records of the corre-
sponding source and/or destination vertices. These lightweight edges are represented by the ID of
their destination vertex or by a pointer to this vertex. This can save storage space and accelerate
resolving different graph queries such as verifying connectivity of two vertices [47].

Linking Records with Direct Pointers. In record-based systems, vertices and edges are stored
in records. To enable efficient resolution of connectivity queries (i.e., verifying whether two ver-
tices are connected), these records have to point to other records. One option is to store direct
pointers (i.e., memory addresses) to the respective connected records. For example, an edge record
can store direct pointers to vertex records with adjacent vertices. Another option is to assign each
record a unique ID and use these IDs instead of direct pointers to refer to other records. On the
one hand, this requires an additional indexing structure to find the physical location of a record
based on its ID. On the other hand, if the physical location changes, it is usually easier to update
the indexing structure instead of changing all associated direct pointers.

Note that specific systems can employ other diverse optimizations. For example, in addition to
using index structures to maintain the locations of data, some databases also store the graph data
in the indexes themselves. In such cases, the index does not point to a certain data record, but the
index itself contains the desired data. Example systems with such functionality are Sparksee/DEX
and Cray Graph Engine. To maintain indices, the former uses bitmaps and B+ trees, while the latter
uses hashtables.

5.3 Query Execution

In query execution, we identify the following aspects: (1) concurrent execution of different queries,
(2) parallelization of single queries, (3) Atomicity, Consistency, Isolation, Durability (ACID)
transactions, (4) support for classes of queries, and (5) support for query languages.

Note that almost all of the studied graph databases are closed source or do not come with any as-
sociated discussions of the details of the design of query execution (except for general descriptions).
Thus, we do not offer a detailed associated taxonomy for algorithmic aspects of query execution
beyond the above criteria. However, we provide a detailed associated discussion on a few systems
that do come with more details on their query execution. We also analyze relationships among

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:15

the backend type, the data organization, and the query execution. This enables deriving certain
insights about the design of different backends. For example, the query language support is pri-
marily affected by the supported conceptual graph model; if it is RDF, then the system usually
supports SPARQL while systems focusing on LPG usually support Cypher or Gremlin.

We define concurrent execution as the execution of separate queries at the same time. Con-
current execution of queries can lead to higher throughput. We also define parallel execution as
the parallelized execution of a single query, possibly on more than one server or compute node.
Parallel execution can lead to lower latencies for queries that can be parallelized.

Many graph databases support transactions; we analyze them in Section 7.3.2. ACID [105] is a
well-known set of properties that database transactions uphold in many database systems. Differ-
ent graph databases explicitly ensure some or all of ACID.

We also analyze supported queries in Section 7.3.3. Some databases (e.g., ArangoDB [16]) are ori-
ented towards OLTP, where focus is on executing many smaller, interactive, transactional queries.
Other systems (e.g., Cray Graph Engine [173]) focus more on OLAP: They execute analytics queries
that span the whole graphs, usually taking more time than OLTP. Finally, different databases (e.g.,
Neo4j [175]) offer extensive support for both.

Although we do not focus on graph database languages, we also report on supported query lan-
guages in Section 7.3.4). We consider the leading languages such as SPARQL [165], Gremlin [176],
Cypher [81, 93, 106], and SQL [59]. We also mention other system-specific languages such as
GraphQL [102] and support for APIs from languages such as C++ or Java.’ Note that mapping
graph queries to SQL was also addressed in past work [191].

6 ANALYSIS OF DATABASE SYSTEMS

We survey and describe selected graph database systems with respect to the proposed taxonomy.
In each system category, we describe selected representative systems, focusing on the associated
graph model, as well as data and storage organization. Tables 2 and 3 illustrate the details of
different graph database systems, including the ones described in this section.* “2” indicates
we were unable to infer this information based on the available documentation. We report the
support for different graph query languages in Table 4. Finally, we analyze different taxonomy
aspects in Section 7.

6.1 Discussion on Selection Criteria

When selecting systems for consideration in the survey, we use two criteria. First, we use the DB-
Engines Ranking® to select the most popular systems in each considered backend category. We also
pick interesting research systems (e.g, SQLGraph [192], LiveGraph [212], or Weaver [67]) that are
not included in this ranking. For detailed discussions, we also consider the availability of technical
details (i.e., most systems are closed source or do not offer any design details).

6.2 RDF Stores (Triple Stores)

RDF stores [1, 45, 98, 153], also called triple stores, implement the RDF model (Section 3.3.4). These
systems organize data into triples. We now describe in more detail a selected recent RDF store, Cray
Graph Engine (Section 6.2.1). We also provide more details on two other systems, AllegroGraph
and BlazeGraph, focusing on variants of the RDF model used in these systems (Section 6.2.2).

3We bring to the reader’s attention a manifesto on creating GQL, a standardized graph query language (https://gql.today).
“We encourage participation in this survey. In case the reader is in possession of additional information relevant for the
tables, the authors would welcome the input.

Shttps://db-engines.com/en/ranking/graph+dbms.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://gql.today
https://db-engines.com/en/ranking/graph+dbms

31:16 M. Besta et al.

Table 2. Comparison of Graph Databases (Native Graph Databases based on RDF and LPG, Key-Value
Stores, and Document Stores)

Graph Database Model Repr. Data Organization Data Distribution & Query Execution A s

oB 1 remarks
System Ipg rdf al am fs vs dp se sv lw ms rp sh ce pe tr oltp olap
NATIVE GRAPH DATABASES (RDF model based, triple stores) (Section 6.2). The main data model used: RDF triples (Section 3.3.4).
AllegroGraph [82] X X B X X B X X X X X @@= = x = = “Triples are stored as integers (RDF strings

map to integers).

BlazeGraph [37] X = Em X X x % X = -) “BlazeGraph uses RDF*, an extension of RDF
(details in Section 6.2.2).

Cray Graph Engine [173] X X @® x X X X X X X X [@® X [@® X @@ X X [@® °RDF triplesare stored in hashtables.

Amazon Neptune [5] X = = x X X X X X B mx e ox w w

AnzoGraph [48] x - - x x X X X X Eox @ m - m - - -

Apache Jena TBD [197] X x @ x x X B ox = = -

Apache Marmotta [14] x x - x x @ X X X X X (W) [@W @ @W @® “The structure of data records is based on
that of different RDBMS systems
(H2 [151], PostgreSQL [150], MySQL [68]).

BrightstarDB [152] X x ®m® x X X X X % = -

gStore [213] X X B m ox X @ x Xx = X x x -

Ontotext GraphDB [157] x x - x x X X X X @ @ X - - - —

Profium Sense [168] x x [C. x X X X X @ @ [*The format used is called JSON-LD:
JSON for vertices and RDF for edges.

TripleBit [210] x x - x x x - X X X X X X X x x [The data organization uses compression.

“Strings map to variable size integers.
#Described as future work.

NATIVE GRAPH DATABASES (LPG model based) (Section 6.9). The main data model used: LPG (Sections 3.3.2, 3.3.3).

Neodj [175] X @ X ® X @ X @ @ X X @ @ X @ X @ @ @ Ncodjis provided as acloud service by a
system called Graph Story [92].

Sparksee/DEX [139] X B ox x x X X o x X x x @®mx @=m e - - - Bllmdps are used for connectivity.

GBase [119] x x % xi = x x X X x x @ x [pports simple gmphs only (Section 3.1).
#GBase stores the AM sparsely

GraphBase [76] X X X X x @@ - - - - - *No support for edge propertics, only two
types of edges available.

Graphflow [120] X W ox @ X x - -

LiveGraph [212] X B ox B O x X @ x @ X X X x @ -

Memgraph [144] x = x = x) @ @ &) ®) @ @ @ This feature is under development.
#Available only for some algorithms.

TigerGraph [200] x = x x - e e w e -

Weaver [67] x @ x x - - e - e

KEY-VALUE STORES (Section 6.4). The main data model used: key-value pairs (Section 3.4.1).

HyperGraphDB [110] X X X X X X @ x @ x X @5 @5 @ @ @ @ @ @8 A Hypergraph model 'The
an incidence index to retriev
vertex. fSupport for ACI only.

MS Graph Engine [184] 8 @ x @ x X @ x @ x @ @ x @ @ @ X @ @ AL contains [Ds of edges and/or vertices.
“Schema is defined by Trinity
Specification Language (TSL)

Dgraph [62] X @ x @ X X @ X @) X X @ @ @ @ @ @ @ @ Dgraphis based on Badger [61].

RedisGraph [170,172,187] %X @® % x X X @ ox X X X @8 @ X - x x x [@®)* RedisGraph is based on Redis [171].
“The OLAP part uses GraphBLAS [122].

DOCUMENT STORES (Section 6.5). The main data model used: documents (Section 3.4.2).

ArangoDB [16] - O X X X X = X) X X X @w ®w @) Usesahybrid index for retrieving edges.

OrientDB [46] - - x - X X - x e W - W X AL contains RIDs (i.e., physical locations)

of edge and vertex records. *Sharding is
user defined. OrientDB supports JSON and
it offers certain object-oriented capabilities.

Azure Cosmos DB [148] - ox X X X ox mox x = m @ x = = -

Bitsy [131] X =B ox x X X ®m® x @mx x X X X =B x ®=m = x Tlu syslnmhdhkbdsndan(lu~Ls]§ONhlu
storage only allows for appending data.

FaunaDB [78] - x X X D mmx X o wm w ox & X I)m.umnnt RDBMS, graph, “time series”.

#Adjacency lists are separately precomputed.
Bolded systems are described in more detail in the corresponding sections. oB: A system supports secondary data
models / backend types (in addition to its primary one). Ipg, rdf: A system supports, respectively, the Labeled
Property Graph and RDF without prior data transformation. am, al: The structure is represented as the adjacency
matrix or the adjacency list. fs, vs: Data records are fixed size and variable size, respectively. dp: A system can use
direct pointers to link records. This enables storing and traversing adjacency data without maintaining indices. se:
Edges can be stored in a separate edge record. sv: Edges can be stored in a vertex record. lw: Edges can be
lightweight (containing just a vertex ID or a pointer, both stored in a vertex record). ms: A system can operate in a
Multi-Server (distributed) mode. rp: Given a distributed mode, a system enables Replication of datasets. sh: Given a
distributed mode, a system enables Sharding of datasets. ce: Given a distributed mode, a system enables Concurrent
Execution of multiple queries. pe: Given a distributed mode, a system enables Parallel Execution of single queries
on multiple nodes/CPUs. tr: Support for ACID Transactions. oltp: Support for Online Transaction Processing.
olap: Support for Online Analytical Processing. B®: A system offers a given feature. @D: A system offers a given
feature in a limited way. %: A system does not offer a given feature. ©7: Unknown.

6.2.1 Cray Graph Engine. Cray Graph Engine (CGE) [173] is a triple store that can scale to
a trillion RDF triples. CGE does not store triples but quads (4-tuples), where the fourth element is
a graph ID. Thus, one can store multiple graphs in one CGE database. Quads in CGE are grouped
by their predicate and the identifier of the graph of which they are a part. Thus, only a pair with
a subject and an object needs to be stored for one such group of quads. These subject/object pairs
are stored in hashtables (one hashtable per group). Since each subject and object is represented as
a unique 48-bit integer identifier (HURI), the subject-object pairs can be packed into 12 bytes and
stored in a 32-bit unsigned integer array, ultimately reducing the amount of needed storage.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:17

Table 3. Comparison of Graph Databases (RDBMS, Wide-Column Stores, Tuple Stores, OODBMS,
and Data Hubs)

Graph Database g Model Repr. Data Organization Data Distribution & Query Execution Additional remarks

System lpg rdf al amfs vs dpse sv Ilw ms rp sh ce pe tr oltpolap
RELATIONAL DBMS (RDBMS) (Section 6.7). The main data model used: tables (implementing relations) (Section 3.4.4).

Oracle Spatial [(mm) W) X X 0" X E)'X X @ [@w @& (@ @ @ @ ‘LPG and RDF use row-oriented storage.
and Graph [159] The system can also run on top of PGX [107]
(effectively as a native graph database).

AgensGraph [36] D) @ X X X x X X ([([- - - @ @ @ AgensGraph is based on PostgreSQL.
FlockDB [202] X %X X %X X x X X ([(W @ @ X X @@ X The system focuses on “shallow” graph
queries, such as finding mutual friends.
IBM Db2 X)X X X 3 - “can store vertices/edges in the same table.
Graph [199] *inherited from the underlying IBM Db2™.
MS S[QL S]erver - - X X X x X X ([([@ @ [@@ @ @ The system uses an SQL graph extension.
2017 [149
OQGRAPH[137] X B X X X O'0' X B'x X D W W x = @ OQGRAPH uses MariaDB [26].
*OQGRAPH uses row-oriented storage.
SAP HANA [18]1]) @@ X ¥ X XX X X' X X H @D @) @S @5 @5 @5 @8 ‘SAP HANA is column-oriented, edges and

vertices are stored in rows. SAP HANA can
be used with a dedicated graph engine [179];
it offers some capabilities of a JSON document
))) store [181]

SQLGraph [192] X @ X X X - m x “SQLGraph uses JSON for property storage.
*SQLGraph uses row-oriented storage.
"depends on the used SQL engine.

WIDE-COLUMN STORES (Section 6.6). The main data model used: key-value pairs and tables (Sections 3.4.1, 3.4.4).

JanusGraph [21[X @ X @ X X B X X JanusGraph is the continuation of Titan.

Titan [21] - ¢ X X [X X ([X ([() @ @ @) @) @ @ Enables various backends (e.g.,

Cassandra [130]).
DSE Graph X Ex X XX X X (- @5 @) @ DSE Graph is based on Cassandra [130].
(DataStax) [58] *Support for AID, Consistency is configurable.
HGraphDB [174] X @ X X X X @) X @) x X D @G @& X* @ @ HGraphDB uses TinkerPop3 with HBase [87].

“ACID is supported only within a row.

TUPLE STORES (Section 6.3). The main data model used: tuples (Section 3.4.3).

WhiteDB [207] X X ED'EX X B @BEEDEFx X X D @ @) @ “Implicit support for triples of integers.
“Implementable by the user. "Transactions
use a global shared/exclusive lock.

Graphd [91] X X EX X - % x - - (=) ¢ Backend of Google Freebase.

“Implicit support for triples. *Subset of ACID.

OBJECT-ORIENTED DATABASES (OODBMS) (Section 6.8). The main data model used: objects (Section 3.4.5).

Velocity- - X X X D EEm X X [B G @ @ @ B @ he system is based on VelocityDB [205]
Graph [206]
Objectivity X @ x [C] () () () @) @) @) @ @ The system is based on ObjectivityDB [95].

ThingSpan [155]
DATA HUBS. The main data model used: several different ones.

MarkLogic [138] 0 X* @ X X - X X X - - - - W) @) W Supported storage/models: relational tables,
RDF, various documents. *Vertices are stored
as documents, edges are stored as RDF triples.

OpenLink - x X X XX X X ([N @ @ @ @)@ @ @ Supported storage/models: relational tables

Virtuoso [158] and RDF triples. *This feature can be used
relational data only.

Cayley [51] () (- (- (= - - x (- (=" Supported storage/models: relational tables,

RDF, document, key-value. “This feature
depends on the backend.

InfoGrid [109] [N @E) X (= - x X (- - - - [CEy Supported storage/models: relational tables,
Hadoop’s filesystem, grid storage. *A weaker
consistency model is used instead of ACID.

Stardog [190] [CREC T S -} X X (- - [(WW) (@) W) Supported storage/models: relational tables,
documents. “RDF is simulated on relational
tables. Both LPG and RDF are enabled
through virtual quints.

Bolded systems are described in more detail in the corresponding sections. All columns and symbols are explained in
the caption of Table 2.

6.2.2 AllegroGraph and BlazeGraph. There exist many other RDF graph databases. We briefly
describe two systems that extend the original RDF model: AllegroGraph and BlazeGraph.

First, some RDF stores allow for attaching attributes to a triple explicitly. AllegroGraph [82]
allows an arbitrary set of attributes to be defined per triple when the triple is created. However,
these attributes are immutable. Figure 8 presents an example RDF graph with such attributes. This
figure uses the same LPG graph as in previous examples provided in Figures 3 and 4, which contain
example transformations from the LPG into the original RDF model.

Second, BlazeGraph [37] implements RDF* [99, 100], an augmentation of RDF that allows for
attaching triples to triple predicates (see Figure 9). Vertices can use triples for storing labels and

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:18

M. Besta et al.

Table 4. Support for Different Graph Database Query Languages in Different Graph Database Systems

Graph Database System

Graph Database Query Language

SPARQL Gremlin Cypher SQL GraphQL Progr. API

Other languages and additional remarks

NATIVE GRAPH DATABASES (RDF model based, triple stores) (Section 6.2).

AllegroGraph I X b3 X X b3 b3

Amazon Neptune (= (= x X X x x

AnzoGraph (= x C Y X X x

Apache Jena TDB (- x x X %) (Java) %

Apache Marmotta (= x x X X x Apache Marmotta also supports its native LDP and LDPath languages.

BlazeGraph Ly (= x X X x “BlazeGraph offers SPARQL* to query RDF*.

BrightstarDB (= x x X X x x

Cray Graph Engine (= x x X X x x

gStore (=) X X X X X X

Ontotext GraphDB (=) x x X X x x

Profium Sense (= x x X X x x

TripleBit (=) x x X x x X

NATIVE GRAPH DATABASES (LPG model based) (Section 6.9).

Gbase X X X [X x

GraphBase X x x X x x GraphBase uses its native query language.

Graphflow x x B X X x “Graphflow supports a subset of Cypher [147]. *Graphflow supports
Cypher++ extension with subgraph-condition-action triggers [120].

LiveGraph x x x X X x No focus on languages and queries.

Memgraph x x () X % x *openCypher.

Neodj x Cmy () x @® Cmy “Gremlin is supported as a part of TinkerPop integration.
*GraphQL supported with the GRANDstack layer.
"Neo4j can be embedded in Java applications.

Sparksee/DEX x (=) x X X) (NET)" *Sparksee/DEX also supports C++, Python, Objective-C, and Java APIs.

TigerGraph x x x X X x TigerGraph uses GSQL [200].

Weaver x x x X x = (C)" “Weaver also supports C++, Python.

TUPLE STORES (Section 6.3).

Graphd X E3 X X X X Graphd uses MQL [91].

WhiteDB x x x X x @ (C)* *WhiteDB also supports Python.

DOCUMENT STORES (Section 6.5).

ArangoDB E3 = X X X X ArangoDB uses AQL (ArangoDB Query Language).

Azure Cosmos DB x L) x = X x x

Bitsy x () x X x x Bitsy also supports other Tinkerpop-compatible languages such as
SQL2Gremlin and Pixy.

FaunaDB x x x X = x x

OrientDB (=) (- (- - % ®® (Java)t *An SQL extension for graph queries. fOrientDB offers bindings to C,
JavaScript, PHP, .NET, Python, and others.

KEY-VALUE STORES (Section 6.4).

Dgraph b3 X X X X “A variant of GraphQL.

HyperGraphDB x x x X X) (Java) %

MS Graph Engine x x x X X x MS Graph Engine uses LINQ [184].

RedisGraph x x (- X % x x

WIDE-COLUMN STORES (Section 6.6).

DSE Graph (DataStax) X (- X X X X DSE Graph also supports CQL [58].

HGraphDB X (=) X X X X X

JanusGraph x (- x X X x x

Titan x (=) % X x x x

RELATIONAL DBMS (RDBMS) (Section 6.7).

AgensGraph x x () (=" % x *A variant called openCypher [94, 140]. FANSI-SQL.

FlockDB x x x - X x FlockDB uses the Gizzard framework and MySQL.

IBM Db2 Graph x [y x - X ®® (Java)? *IBM Db2 Graph supports only graph queries whose results can be
returned to rows. *IBM Db2 Graph also supports Scala, Python and
Groovy.

MS SQL Server 2017 X % % L X *Transact-SQL.

OQGRAPH X X X [N X X

Oracle Spatial and Graph @® X X = % x “PGQL [204], an SQL-like graph query language.

SAP HANA x X X = % (=) “SAP HANA offers bindings to Rust, ODBC, and others.
*GraphScript, a domain-specific graph query language.

SQLGraph x ey x % x *SQLGraph doesn’t support Gremlin side effect pipes.
*Graph is encoded in a way specific to SQLGraph.

OBJECT-ORIENTED DATABASES (OODBMS) (Section 6.8).

Objectivity ThingSpan %X X X X X X Objectivity ThingSpan uses a native DO query language [155].

VelocityGraph x X X X X =) (NET) X

DATA HUBS.

Cayley X o x X x *Cayley supports Gizmo, a Gremlin dialect [51].
Cayley also uses MQL [51].

InfoGrid x x x x %) (REST) %

MarkLogic x x x X % x MarkLogic uses XQuery [39].

OpenLink Virtuoso C] x x L x OpenLink Virtuoso also supports XQuery [39], XPath v1.0 [54],
and XSLT v1.0 [121].

Stardog L (=) x X ([x *Stardog supports the Path Query extension [190].

“Progr. API” determines whether a given system supports formulating queries using some native programming
language such as C++. “@®”: A system supports a given language. “®3”: A system supports a given language in a
limited way. “%”: A system does not support a given language.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:19

:Person Alice Bob

naargg = é!ﬂce 21 triple attribute 24
| name name
age
:knows S {since:lé)%?x)vss.zom} °
since = 09.08.2007
¥ it
:Person ype ype
ngg\ee:zbe vertex vertex
LPG graph RDF graph, with triple attributes

Fig. 8. Comparison of an LPG graph and an RDF graph: a transformation from LPG to RDF with triple at-

tributes. We represent the triple attributes as a set of key—value pairs. “Person/V-ID,” “age,” “name,” “type,” and
“knows” are RDF URIs. The transformation uses the assumption that there is one label per vertex and edge.

:Person :
name = Alice 51 Alice TGEIT Bob -,
age =
g | name name
:knows age since age
since = 09.08.2007
knows
:Person type a triple attached type
name = Bob vertex to a triple vertex
age = 24
LPG graph RDF* graph

Fig. 9. Comparison of an LPG graph and an RDF* graph: a transformation from LPG to RDF* that enables

”» « » «

attaching triples to triple predicates. “Person/V-ID,” “age,” “name,” “type,” “since,” and “knows” are RDF URIs.
The transformation uses the assumption that there is one label per vertex and edge.

properties, analogously as with the plain RDF. However, with RDF*, one can represent LPG edges
more naturally than in the plain RDF. Specifically, edges can be stored as triples, and edge proper-
ties can be linked to the edge triple via other triples.

6.3 Tuple Stores

A tuple store is a generalization of an RDF store. RDF stores are restricted to triples (or quads, as
in CGE), whereas tuple stores can maintain tuples of arbitrary sizes, as detailed in Section 3.4.3.

6.3.1 WhiteDB. WhiteDB [207] is a tuple store that enables allocating new records (tuples)
with an arbitrary tuple length (number of tuple elements). Small values and pointers to other
tuples are stored directly in a given field. Large strings are kept in a separate store. Each large
value is only stored once, and a reference counter keeps track of how many tuples refer to it at
any time. WhiteDB only enables accessing single tuple records, there is no higher level query
engine or graph API that would allow to, for example, execute a query that fetches all neighbors
of a given vertex. However, one can use tuples as vertex and edge storage, linking them to one
another via memory pointers. This facilitates fast resolution of various queries about the structure
of an arbitrary irregular graph structure in WhiteDB. For example, one can store a vertex v with
its properties as consecutive fields in a tuple associated with v and maintain pointers to selected
neighborhoods of v in ©’s tuple. More examples on using WhiteDB (and other tuple stores such as
Graphd) for maintaining graph data can be found online [145, 207].

6.4 Key-Value Stores

One can also explicitly use KV stores for maintaining a graph (cf. Section 3.4.1).

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:20 M. Besta et al.

key (atom ID) value (ID-list or binary data)

vertex |D =y --
edge D —— (E/pelD) ValuelD VertexiD (1) VertexiD
value ID =i -.- or binary data

Fig. 10. An example utilization of key—value stores for maintaining hypergraphs in HyperGraphDB (a type
is a term used in HyperGraphDB to refer to a label).

6.4.1 Microsoft’s Graph Engine (Trinity). Microsoft’s Graph Engine [184] is based on a dis-
tributed KV store called Trinity. Trinity implements a globally addressable distributed RAM stor-
age. In Trinity, keys are called cell IDs and values are called cells. A cell can hold data items of
different data types, including IDs of other cells. MS Graph Engine introduces a graph storage
layer on top of the Trinity KV storage layer. Vertices are stored in cells, where a dedicated field
contains a vertex ID or a hash of this ID. Edges adjacent to a given vertex v are stored as a list of
IDs of v’s neighboring vertices, directly in ©’s cell. However, if an edge holds rich data, then such
an edge (together with the associated data) can also be stored in a separate dedicated cell.

6.4.2 HyperGraphDB. HyperGraphDB [110] stores hypergraphs (definition in Section 3.3.1).
The basic building blocks of HyperGraphDB are atoms, the values of the KV store. Every atom has
a cryptographically strong ID. This reduces a chance of collisions (i.e., creating identical IDs for
different graph elements by different peers in a distributed environment). Both hypergraph vertices
and hyperedges are atoms. Thus, they have their own unique IDs. An atom of a hyperedge stores a
list of IDs corresponding to the vertices connected by this hyperedge. Vertices and hyperedges also
have a type ID (i.e., a label ID), and they can store additional data (such as properties) in a recursive
structure (referenced by a value ID). This recursive structure contains value IDs identifying other
atoms (with other recursive structures) or binary data. Figure 10 shows an example of how a KV
store is used to represent a hypergraph in HyperGraphDB.

6.5 Document Stores

In document stores, a fundamental storage unit is a document, described in Section 3.4.2. We select
two document stores for a more detailed discussion, OrientDB and ArangoDB.

6.5.1 OrientDB. In OrientDB [46], every document d has a Record ID (RID), consisting of
the ID of the collection of documents where d is stored, and the position (also referred to as the
offset) within this collection. Pointers (called links) between documents are represented using these
unique RIDs.

OrientDB [46] introduces regular edges and lightweight edges. Regular edges are stored in an edge
document and can have their own associated key-value pairs (e.g., to encode edge properties or
labels). Lightweight edges, however, are stored directly in the document of the adjacent (source or
destination) vertex. Such edges do not have any associated key—value pairs. They constitute simple
pointers to other vertices, and they are implemented as document RIDs. Thus, a vertex document
stores not only the labels and properties of the vertex but also a list of lightweight edges (as a list of
RIDs of the documents associated with neighboring vertices) and a list of pointers to the adjacent
regular edges (as a list of RIDs of the documents associated with these regular edges). Each regular
edge has pointers (RIDs) to the documents storing the source and the destination vertex. Each
vertex stores a list of links (RIDs) to its incoming and the outgoing edges.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:21

a regular edge of type "knows"

edge 1
out EiESH0B1082007
vertex 1 vertex 2

—_—
a lightweight edge

Fig. 11. Two vertex documents connected with a lightweight edge and a regular edge (knows) in OrientDB.

Fig. 12. Example OrientDB vertex and edge documents (complex JSON documents are also supported).

Figure 11 contains an example of using documents for representing vertices, regular edges, and
lightweight edges in OrientDB. Figure 12 shows example vertex and edge documents.

6.5.2 ArangoDB. ArangoDB [16, 17] keeps its documents in a binary format called VelocyPack,
which is a compacted implementation of JSON documents. Documents can be stored in different
collections and have a _key attribute that is a unique ID within a given collection. Unlike OrientDB,
these IDs are no direct memory pointers. For maintaining graphs, ArangoDB uses vertex collections
and edge collections. The former are regular document collections with vertex documents. Vertex
documents store no information about adjacent edges. This has the advantage that a vertex doc-
ument does not have to be modified when one adds or removes edges. Second, edge collections
store edge documents. Edge documents have two particular properties: _from and _to, which are
the IDs of the documents associated with two vertices connected by a given edge. An optimization
in ArangoDB’s design prevents reading vertex documents and enables directly accessing one edge
document based on the vertex ID within another edge document. This may improve cache efficiency
and thus reduce query execution time [17].

One can use different collections of documents to store different edge types (e.g., “friend_of”
or “likes”). When retrieving edges conditioned on some edge type (e.g., “friend_of”), one does not
have to traverse the whole adjacency list (all “friend_of” and “likes” edges). Instead, one can target
the collection with the edges of the specific edge type (“friend_of”).

6.6 Wide-Column Stores

Wide-column stores combine different features of key—value stores and relational tables. On the
one hand, a wide-column store maps keys to rows (a KV store that maps keys to values). Every
row can have an arbitrary number of cells, and every cell constitutes a key—value pair. Thus, a
row contains a mapping of cell keys to cell values, effectively making a wide-column store a two-
dimensional KV store (a row key and a cell key both identify a specific value). On the other hand,
a wide-column store is a table, where cell keys constitute column names. However, unlike in a
relational database, the names and the format of columns may differ between rows within the
same table. We illustrate an example subset of rows and cells in a wide-column store in Figure 13.

6.6.1 Titan and JanusGraph. Titan [21] and its continuation JanusGraph [198] are built on top of
wide-column stores. They can use different wide-column stores as backends, for example, Apache
Cassandra [12]. In both systems, when storing a graph, each row represents a vertex. Each vertex

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:22 M. Besta et al.

ey — (I CEIEID I
by key | key ——— (SN [EIVAIGE) (e (e
ey — (I RN B BTN

sorted by cell key

Fig. 13. An illustration of wide-column stores: mapping keys to rows and column-keys to cells within the
rows.

sorcs by [verx o ——— GRGRERS) (FRER) (GG (NEdEn) (edkEn)

sorted by cell key

Fig. 14. Anillustration of Titan and JanusGraph: using wide-column stores for storing graphs. The illustration
is inspired by and adapted from the work by Sharma [185].

property and adjacent edge is stored in a separate cell. One edge is thus encoded in a single cell,
including all the properties of this edge. Since cells in each row are sorted by the cell key, this
sorting order can be used to find cells efficiently. For graphs, cell keys for properties and edges are
chosen such that after sorting the cells, the cells storing properties come first, followed by the cells
containing edges, see Figure 14. Since rows are ordered by the key, both systems straightforwardly
partition tables into so-called tablets, which can then be distributed over multiple servers.

6.7 Relational Database Management Systems

RDBMS store data in two-dimensional tables with rows and columns, described in more detail in
the corresponding data model section in Section 3.4.4.

There are two types of RDBMS: column RDBMS (not to be confused with wide-column stores)
and row RDBMS (also referred to as column-oriented or columnar and row-oriented). They differ
in physical data persistence. In many row RDBMS, data items in memory are kept in contigu-
ous rows [22, 177]. Column RDBMS, however, store table columns contiguously. Row RDBMS are
more efficient when only a few rows need to be retrieved but with all their columns. Conversely,
column RDBMS are more efficient when many rows need to be retrieved but only with a few
columns. Graph database solutions that use RDBMS as their backends use both row RDBMS (e.g.,
Oracle Spatial and Graph [159], OQGRAPH built on MariaDB [137]) and column RDBMS (e.g., SAP
HANA [181]).

6.7.1 Oracle Spatial and Graph. Oracle Spatial and Graph [159] is built on top of Oracle Data-
base. It provides a rich set of tools for administration and analysis of graph data. Oracle Spatial and
Graph comes with a range of built-in parallel graph algorithms (e.g., for community detection, path
finding, traversals, link prediction, PageRank, etc.). Both LPG and RDF models are supported. Rows
of RDBMS tables constitute vertices and relationships between these rows form edges. Associated
properties and attributes are stored as key—-value pairs in separate structures.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:23

L

previous edges in
the neighborhoods of
the adjacent vertices

b

vertex 1 <—— knows —— vertex 2

_ next edges in the
‘ the neighborhoods of
the adjacent vertices

™~

vertex properties -

Fig. 15. Summary of the Neo4j structure: two vertices linked by a “knows” edge. Both vertices maintain
linked lists of properties. The edges are part of two doubly linked lists, one linked list per adjacent vertex.

6.8 Object-Oriented Databases

OODBMS [19] enable modeling, storing, and managing data in the form of language objects used
in object-oriented programming languages. We summarize such objects in Section 3.4.5.

6.8.1 VelocityGraph. VelocityGraph [206] is a graph database relying on the VelocityDB [205]
distributed object database. VelocityGraph edges, vertices, as well as edge or vertex properties are
stored in C# objects that contain references to other objects. To handle this structure, Velocity-
Graph introduces abstractions such as VertexType, EdgeType, and PropertyType. Each object has
a unique object identifier, pointing to its location in physical storage. Each vertex and edge has one
type (label). Properties are stored in dictionaries. Vertices keep the adjacent edges in collections.

6.9 LPG-based Native Graph Databases

Graph database systems described in the previous sections with the exception of triple stores are
all based on some database backend that was not originally built just for managing graphs. In
what follows, we describe LPG-based native graph databases: systems that were specifically build
to maintain and process graphs.

6.9.1 Neodj: Direct Pointers. Neo4j [175] is the most popular graph database system, according
to different database rankings (see the links provided in the introduction). Neo4j implements the
LPG model using a storage design based on fixed-size records. A vertex v is represented with a
vertex record, which stores (1) v’s labels, (2) a pointer to a linked list of ©’s properties, (3) a pointer
to the first edge adjacent to v, and (4) some flags. An edge e is represented with an edge record,
which stores (1) e’s edge type (a label), (2) a pointer to a linked list of e’s properties, (3) a pointer
to two vertex records that represent vertices adjacent to e, (4) pointers to the ALs of both adjacent
vertices, and (5) some flags. Each property record can store up to four properties, depending on the
size of the property value. Large values (e.g., long strings) are stored in a separate dynamic store.
Storing properties outside vertex and edge records allows those records to be small. Moreover,
if no properties are accessed in a query, then they are not loaded at all. The AL of a vertex is
implemented as a doubly linked list. An edge is stored once but is part of two such linked lists
(one list for each adjacent vertex). Thus, an edge has two pointers to the previous edges and two
pointers to the next edges. Figure 15 outlines the Neo4j design; Figure 16 shows the details of
vertex and edge records.

A core concept in Neo4j is using direct pointers [175]: A vertex stores pointers to the physical
locations of its neighbors. Thus, for neighborhood queries or traversals, one needs no index and
can instead follow direct pointers (except for the root vertices in traversals). Consequently, the

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:24 M. Besta et al.

alink to the a linked list of property records,

first edge p
a vertex rec°r(7 record/each holding four property blocks
inUse flags

nextEdgelD nextProplD labels
1 5 9 14
an edge record: firstNextEdgelD secondNextEdgelD
inUse firstPrevEdgelD secondPrevEdgelD flags
firstVertex secondVertex relType nextProplD
1 5 9 13 17 21 25 29 33
- 2> = e e
links to adjacent vertices pointers in a doubly linked pointers in a doubly linked
adjacency list belonging adjacency list belonging to
to the first adjacent vertex the second adjacent vertex

Fig. 16. An overview of the Neo4j vertex and edge records.

property/label edge or
vertex ID

edge or) B+ tree ptr a value or | bitmap ptr

vertex ID = Tl 0001001000001
vertex/edge connectivity (in/out directions) edge ID
B+ t t bitmap ptr
edge D T TEEPY Vertex ID PP 50100110000010011000

Fig. 17. Sparksee maps for properties, labels, and vertex/edge connectivity. All mappings are bidirectional.

query complexity does not dependent on the graph size. Instead, it only depends on how large the
visited subgraph is.®

6.9.2 Sparksee/DEX: B+ Trees and Bitmaps. Sparksee is a graph database system that was for-
merly known as DEX [139]. Sparksee implements the LPG model in the following way. Vertices
and edges (both are called objects) are identified by unique IDs. For each property name, there is
an associated B+ tree that maps vertex and edge IDs to the respective property values. The reverse
mapping from a property value to vertex and edge IDs is maintained by a bitmap, where a bit set
to one indicates that the corresponding ID has some property value. Labels and vertices and edges
are mapped to each other in a similar way. Moreover, for each vertex, two bitmaps are stored: One
bitmap indicates the incoming edges and another one the outgoing edges. Furthermore, two B+
trees maintain the information about what vertices an edge is connected to (one tree for each edge
direction). Figure 17 illustrates example mappings.

Sparksee is one of the few systems that are not record based. Instead, Sparksee uses maps im-
plemented as B+ trees [56] and bitmaps. The use of bitmaps allows for some operations to be
performed as bit-level operations. For example, if one wants to find all vertices with certain values
of properties such as “age” and “first name,” then one can simply find two bitmaps associated with
the “age” and the “first name” properties and then derive a third bitmap that is a result of applying
a bitwise AND operation to the two input bitmaps.

Uncompressed bitmaps could grow unmanageably in size. As most graphs are sparse, bitmaps
indexed by vertices or edges mostly contain zeros. To alleviate large sizes of such sparse bitmaps,

®That said, if the graph does not fit into the main memory, then the execution speed heavily depends on caching and cache
pre-warming, i.e., the running time may significantly increase.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:25

they are cut into 32-bit clusters. If a cluster contains a non-zero bit, then it is stored explicitly. The
bitmap is then represented by a collection of (cluster-id, bit-data) pairs. These pairs are stored in a
sorted tree structure to allow for efficient lookup, insertion, and deletion.

7 TAKEAWAYS, INSIGHTS, FUTURE DIRECTIONS

We now offer different insights about the described systems, considering both practitioners and
researchers. We interleave these insights with suggestions for future developments and research.

7.1 Discussion, Takeaways, and Insights on Data Organization

We discuss the data organization aspects of our taxonomy with respect to specific graph databases.

7.1.1 Conceptual Graph Models. There is no one standard conceptual graph model, but two
models have proven to be popular: RDF and LPG. RDF is a well-defined standard. However, it only
supports simple triples (subject, predicate, object) representing edges from subject identifiers via
predicates to objects. LPG allows vertices and edges to have labels and properties, thus enabling
more natural data modeling in different scenarios [175]. Still, it is not standardized, and there
are many variants (cf. Section 3.3.3); However, it is becoming standardized in the upcoming
SQL/PGQ and GQL standards from ISO [80]. Some systems limit the number of labels to just 1. For
example, MarkLogic allows properties for vertices but none for edges and thus can be viewed as
a combination of LPG (vertices) and RDF (edges). Data stored in the LPG model can be converted
to RDF, as described in Section 3.3.5. To benefit from different LPG features while keeping RDF
advantages such as simplicity, some researchers proposed and implemented modifications to RDF.
Examples are triple attributes or attaching triples to other triples (described in Section 6.2.2).

Among native graph databases, while no LPG focused system simultaneously supports RDF,
some RDF systems (e.g., Amazon Neptune) also support LPG. Further, there has been recent work
on unifying RDF and LPG [11, 85, 132]. Many other classes (KV stores, document stores, RDBMS,
wide-column stores, OODBMS) offer only LPG (with some exceptions, e.g., Oracle Spatial and
Graph). The latter suggests that it may be easier to express the LPG datasets than the RDF datasets
with the respective non-graph data models such as a collection of documents.

Another interesting challenge is to understand better the design tradeoffs between LPG and RDF.
For example, it is unclear which one is more advantageous for different workload classes under
different design constraints (disk vs. in-memory representation, distributed vs. shared-memory,
replicated vs. sharded, etc.). This could be achieved by developing formal runtime and storage
models followed by an extensive evaluation.

There are very few systems that use neither RDF nor LPG. HyperGraphDB uses the hypergraph
model and GBase uses a simple directed graph model without any labels or properties. Thus, these
models are of less relevance to practitioners, but they offer a potentially interesting direction for
researchers. Especially in the context of hypergraphs, there has been a recent proliferation of
novel schemes in other domains of graph processing, such as graph learning [23], suggesting that
exploring hypergraphs for graph databases may be a timely direction.

7.1.2 Graph Structure Representations. Many graph databases use variants of AL, since it makes
traversing neighborhoods efficient and straightforward [175]. This includes several (but not all)
systems in the classes of LPG-based native graph databases, KV stores, document stores, wide-
column stores, tuple stores, and OODBMS. Contrarily, none of the considered RDF, RDBMS, and
data hub systems explicitly use AL. This is because the default design of the underlying data model,
e.g., tables in RDBMS or documents in document stores, do not often use AL.

Moreover, none of the systems that we analyzed use an uncompressed AM, as it is inefficient
with O(n?) space, especially for sparse graphs. Systems using AM focus on compression of the

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:26 M. Besta et al.

adjacency matrix, trying to mitigate storage and query overheads (e.g., GBase [119]). Thus, as
with hypergraphs, the AM representation is of less relevance to practitioners. However, the recent
explosion of the popularity of graph analytics based on linear algebra (e.g., GraphBLAS [122] and
CAGNET [201]) suggests that exploring AM in the context of graph databases may be a useful di-
rection, especially with respect to high-performance OLAP analytics that very often could directly
use the graph AM representation.

7.2 Discussion, Takeaways, and Insights on Data Optimizations

We discuss separately common optimizations in data organization.

7.2.1 Using Existing Storage Designs. Most graph database systems are built upon existing stor-
age designs, including key—-value stores, wide-column stores, RDBMS, and others. The advantage
of using existing storage designs is that these systems are usually mature and well tested. The
disadvantage is that they may not be perfectly optimized for graph data and graph queries. This
is what native graph databases attempt to address. Overall, there is a lot of research potential in
more efficient and more effective use of existing storage designs for graph databases. For example,
a promising direction would be to investigate how recent RDBMS development, such as worst-case
optimal joins [154], could be used for graph related workloads.

7.2.2 Data Layout of Records. The details of record-based data organization heavily depend on
a specific system. For example, an RDBMS could treat a table row as a record, key-value stores
often maintain a single value in a single record, while in document stores, a single document could
be a record. Importantly, some systems allow variable sized records (e.g., ArangoDB), and others
only enable fixed sized records (e.g., Neo4j). Finally, we observe that while some systems (e.g., some
triple stores such as Cray Graph Engine) do not explicitly mention records, the data could still be
implicitly organized as records. In triple stores, one would naturally associate a triple with a record.

Graph databases often use one or more records per vertex (these records are sometimes referred
to as vertex records). Neo4j uses multiple fixed-size records for vertices, while document databases
use one document per vertex (e.g., ArangoDB). Edges are sometimes stored in the same record
together with the associated (source or destination) vertices (e.g., Titan or JanusGraph). Otherwise,
edges are stored in separate edge records (e.g., ArangoDB).

The records used by the studied graph databases may be unstructured (i.e., not having a pre-
specified format such as JSON), as is the case with KV stores. They can also be structured: Docu-
ment databases often use the JSON format, wide-column stores have a key—value mapping inside
each row, row-oriented RDBMS divide each row into columns, OODBMS impose some class def-
inition, and tuple stores as well as some RDF stores use tuples. The details of data layout (i.e.,
how vertices and edges are exactly represented and encoded in records) may still vary across dif-
ferent system classes. Some structured systems still enable highly flexible structure inside their
records. For example, document databases that use JSON or wide-columns stores such as Titan
and JanusGraph allow for different key-value mappings for each vertex and edge. Other record-
based systems are more fixed in their structure. For example, in OODBMS, one has to define a class
for each configuration of vertex and edge properties. In RDBMS, one has to define tables for each
vertex or edge type.

Some systems (e.g., Sparksee, some triple stores, or column-oriented RDBMS) do not store infor-
mation about vertices and edges contiguously in dedicated records. Instead, they maintain separate
data structures for each property or label. The information about a given vertex is thus distributed
over different structures. To find a property of a particular vertex, one has to query the associated
data structure (index) for that property and find the value for the given vertex. Examples of such
used index structures are B+ trees (in Sparksee) or hashtables (in some RDF systems).

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:27

Overall, most systems use records to store vertices, most often one vertex per one record. Some
systems store edges in separate records, and others store them together with the adjacent vertices.
To find a property of a particular vertex, one has to find a record containing the vertex. The
searched property is either stored directly in that record, or its location is accessible via a pointer.
We observe that these design choices are made arbitrarily. We conclude that an interesting
research direction would be developing formal performance models and using them to guide the
most advantageous design choice for each type of storage backend for graph databases.

7.2.3 Adjacencies between Records. Another aspect of a graph data layout is the design of the
adjacency between records. One can either assign each record an ID and then link records to one
another via IDs, or one can use direct memory pointers. Using IDs requires an indexing structure
to find the physical storage address of a record associated with a particular ID. Direct memory
pointers do not require an index for a traversal from one record to its adjacent records. Note that
an index might still be used, for example, to retrieve a vertex with a particular property value (in
this context, direct pointers only facilitate resolving adjacency queries between vertices).

Using direct pointers can accelerate graph traversals [175], as additional index traversals are
avoided. Another option is to assign each record a unique ID and use these IDs instead of direct
pointers to refer to other records. On the one hand, this requires an additional indexing structure
to find the physical location of a record based on its ID. On the other hand, if the physical location
changes, then it is usually easier to update the indexing structure instead of changing all associated
direct pointers, which may come with significant overhead [17]. Here one could also make these
design choices and tradeoffs more accurate by designing performance models to guide them.

7.2.4 Storing Data Directly in Indexes. Sometimes graph data are stored directly in an index.
Triple stores use indexes for various permutations of subject, predicate, and object to answer
queries efficiently. Jena TBD stores its triple data inside of these indexes but has no triple table itself,
since the indexes already store all necessary data [197]. HyperGraphDB uses a key-value index,
namely Berkeley DB [156], to access its physical storage. This approach also enables sharing primi-
tive data values with a reference count so that multiple identical values are stored only once [110].

7.2.5 Storing Strings. Many systems, for example RDFs, heavily use strings, for example for
keeping IDs of different parts of graph datasets. Thus, there are different schemes or maintaining
strings. First, many systems support both fixed-size and variable-size strings. This enables more
performance: The former (that encode, e.g., IDs) can be kept and accessed rapidly in dedicated
structures that assume certain specific sizes, while the latter (that encode, e.g., arbitrary text items)
often use separate dynamic structures that are slower to access but offer more flexibility [175, 207].
Such dynamic stores can be both in-memory structures, but they could even be separate files [175].

The considered systems offer other string related optimizations. For example, CGE optimizes
how it stores strings from its triples/quads. Storing multiple long strings per triple/quad is ineffi-
cient, considering the fact that many triples/quads may share strings. Therefore, CGE—similarly to
many other RDF systems—maintains a dictionary that maps strings to unique 48-bit integer iden-
tifiers (HURIs). For this, two distributed hashtables are used (one for mapping strings to HURIs
and one for mapping HURISs to strings). When loading, the strings are sorted and then assigned to
HURIs. This allows integer comparisons (equal, greater, smaller, etc.) to be used instead of more
expensive string comparisons. This approach is shared by, e.g., tuple stores such as WhiteDB.

RDF systems also harness external dedicated libraries for more effective string management.
For example, the RDF String library [166] facilitates constructing RDF strings. Specifically, it au-
tomatically generates string representations of specified values, together with appropriate URI
prefixes. This library can be used to even encode multi-line strings or conduct string interpolation

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:28 M. Besta et al.

with embedded expressions. Another example is RDF String Turtle [195], a package that enables
conversions between the string-based and RDF JSON representations of RDF.

7.2.6 Data Distribution. Almost all considered systems support a multi server mode and data
replication. Data sharding is also widely supported, but there are some systems that do not offer
this feature. We expect that, with growing dataset sizes, data sharding will ultimately become as
common as data replication. Still, it is more complex to provide. We observe that, while sharding
is as widely supported on graph databases based on non-graph data models (e.g., document stores)
as data replication, there is a significant fraction of native graph databases (both RDF and LPG
based) that offer replication but not sharding. This indicates that non-graph backends are usually
more mature in designs and thus more attractive for industry purposes and for practitioners, si-
multaneously implying research potential in the native graph database designs. We also observe
that certain systems offer some form of tradeoff between replication and sharding. Specifically,
OrientDB offers a form of sharding in which not all collections of documents have to be copied
on each server. However, OrientDB does not enable sharding of the collections themselves (i.e.,
distributing one collection across many servers). If an individual collection grows large, then it is
the responsibility of the user to partition the collection to avoid any additional overheads. Thus,
it would be interesting to research how to automatize sharding of single document collections, or
even single (large) documents. Another such example is Neo4;j, which supports replication and
provides certain level of support for sharding. Specifically, the user can partition the graph and
store each partition in a separate database, limiting data redundancy.

Here another interesting research opportunity would be to accelerate graph database workloads
such as OLAP by harnessing partial data replication. Specifically, many OLAP graph database
workloads such as BFS can be expressed with linear algebra operations [122], and these workloads
could benefit from the partial replication of the adjacency matrix, for example as done in two-and-
a-half-dimensional (2.5D) and 3D matrix multiplications [188, 189].

7.2.7 Indexes. Most graph database systems use indexes. Now, systems based on non-graph
backends, for example RDBMS or document stores, usually rely on existing indexing infrastructure
present in such systems. Native graph databases employ index structures for the neighborhoods
of each vertex, often in the form of direct pointers [175].

Neighborhood indexes are used mostly to speed up the access of adjacency lists to accelerate
traversal queries. JanusGraph calls these indexes vertex centric. They are constructed specifically
for vertices, so that incident edges can be filtered efficiently to match the traversal conditions [21].
While JanusGraph allows multiple vertex-centric indexes per vertex, each optimized for different
conditions, which are then chosen by the query optimizer, simpler solutions exist as well. Live-
Graph uses a two-level hierarchy, where the first level distinguishes edges by their label, before
pointing to the actual physical storage [212]. Graphflow indexes the neighbors of a vertex into
forward and backward adjacency lists, where each list is first partitioned by the edge label and,
second, by the label of the neighbor vertex [120]. Another example is Sparksee, which uses vari-
ous different index structures to find the adjacent vertices and properties of a vertex [139].

An interesting research opportunity is to design indexes for richer “higher-order” struc-
tural information beyond plain neighborhoods. Specifically, a recent wave of pattern matching
schemes [35, 146] indicates the importance of higher-order graph structure, such as triangles to
which each vertex belongs. Indexing such information would significantly speed up queries related
to clique mining, dense subgraph discovery, clustering, and many others. While some work has
been done in this respect [182], many designs could be proposed.

Data indexes concern data beyond the neighborhood information, and they can be used to
accelerate query plan generation and query execution. It is possible, for example, to index all

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:29

Table 5. Support for Different Index Implementations in Different Graph Database Systems

Graph Database System Tree Hashtable Skip list Additional remarks

Apache Jena TBD = X x “B+-tree
ArangoDB X (o) (o *depends on the used index engine
Blazegraph LA x “B+-tree
Dgraph X () x
Memgraph x x ()
OrientDB (O s X *SB-tree with base 500
*also supports a distributed hashtable index
VelocityGraph LT x “B-tree
Virtuoso (LT X “2D R-tree
WhiteDB - X X “T-tree

“@m”: A system supports a given index implementation. “%”: A system does not support a given index
implementation.

vertices that have a specific property (value). They are usually employed to speed up Business
Intelligence workloads (details on workloads are in Section 4). Many triple stores, for example Al-
legroGraph [82], provide all six permutations of subject (S), predicate (P), and object (O) as well
as additional aggregated indexes. However, to reduce associated costs, other approaches exist as
well: TripleBit uses just two permutations (PSO, POS) with two aggregated indexes (SP, SO) and
two auxiliary index structures [210]. gStore implements pattern matching queries with the help
of two index structures: a VS*-tree, which is a specialized B+-tree, and a trie-based T-index [213].
Some database systems like Amazon Neptune [5] or AnzoGraph [48] only provide implicit in-
dexes, while still being confident to answer all kinds of queries efficiently. However, most graph
database systems allow the user to explicitly define data indexes. Some of them, like Azure Cos-
mos DB [148], support composite indexes (a combination of different labels/properties) for more
specific use cases. In addition to internal indexes, some systems employ external indexing tools.
For example, Titan and JanusGraph [21] use internal indexing for label- and value-based lookups
but rely on external indexing backends (e.g., Elasticsearch [72] or Apache Solr [15]) for non-trivial
lookups involving multiple properties, ranges, or full-text search.

Structural indexes are used for various internal data. Here LiveGraph uses a vertex index to map
its vertex IDs to a physical storage location [212]. ArangoDB uses a hybrid index, a hashtable, to
find the documents of incident edges and adjacent vertices of a vertex [16].

We categorize systems (for which we were able to find this information) according to this cri-
teria in Table 5. We find no clear connection between the index type and the backend of a graph
database, but most systems use tree-based indexes. A research opportunity, useful especially for
practitioners, would be to conduct a detailed and broad performance comparison of different index
implementations for different workloads.

7.2.8 Data Organization vs. Database Performance. Record-based systems usually deliver more
performance for queries that need to retrieve all or most information about a vertex or an edge.
They are more efficient, because the required data are stored in consecutive memory blocks. In
systems that store data in indexes, one queries a data structure per property, which results in
a more random access pattern. However, if one only wants to retrieve single properties about
vertices or edges, then such systems may only have to retrieve a single value. Contrarily, many
record-based systems cannot retrieve only parts of records, fetching more data than necessary.

Furthermore, a decision on whether to use IDs versus direct memory pointers to link records
depends on the read/write ratio of the workload for the given system. In the former case, one
has to use an indexing structure to find the address of the record. This slows down read queries

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:30 M. Besta et al.

compared to following direct pointers. However, write queries can be more efficient with the use of
IDs instead of pointers. For example, when a record has to be moved to a new address, all pointers
to this record need to be updated to reflect this new address. IDs could remain the same, only the
indexing structure needs to modify the address of the given record.

The available performance studies [6, 125, 141, 142, 203] indicate that systems based on non-
graph data models, for example document stores or wide-column stores, usually achieve more per-
formance for transactional workloads that update the graph. Contrarily, read-only workloads (both
simple and global analytics) often achieve more performance on native graph stores. Global analyt-
ics particularly benefit from native graph stores that ensure parallelization of single queries [141].
It underlies the potential and research opportunities for developing hybrid database systems for
graph workloads, that could combine the advantages of databases using non-graph data models
and of native graph stores.

7.3 Discussion and Takeaways on Query Execution

We discuss the query execution aspects of our taxonomy with respect to the specific graph
databases. Our discussion is by necessity brief, as most systems do not disclose this information.’”

7.3.1 Concurrency and Parallelization. We start with concurrency and parallelization.

Support for Concurrency and Parallelism in OLTP Queries. We conclude that (1) almost all
systems support concurrent OLTP queries, and (2) in almost all classes of systems, fewer systems
support parallel OLTP query execution (with the exception of OODBMS-based graph databases).
This indicates that more databases put more stress on high throughput of queries executed per
time unit rather than on lowering the latency of a single query. A notable exception is the Cray
Graph Engine, which does not support concurrent queries, but it does offer parallelization of single
queries. In general, we expect most systems to ultimately support both features. With the growing
importance of more complex OLTP workloads and the ongoing process of blurring the difference
between complex OLTP and Business Intelligence workloads, putting more focus on parallel OLAP
designs is becoming a more attractive and urgent research direction [194].

Support for Concurrency and Parallelism in OLAP Queries. OLAP queries are usually
parallelized. This is because such queries often involve all the vertices and edges, making the
sequential execution prohibitively long. Moreover, parallelization of such queries is facilitated by
the fact that there exists a plethora of related work, due to the prevalence of certain OLAP queries
(e.g., traversals, centralities) in static graph analytics [27, 34, 117, 122, 143]. At the same time,
concurrent execution of different OLAP queries is supported only to some degree. For example,
Weaver supports concurrent large-scale OLAP queries such as BFS, but each such query processes
an immutable separate snapshot of the graph dataset. One could attempt to investigate how to
effectively run concurrent OLAP queries (as well as large-scale read-only Business Intelligence
workloads that have similar characteristics), which potentially only needs certain amount of basic
state bookkeeping.

Support for Concurrent OLAP and OLTP Queries. Concurrent execution of OLAP and
OLTP queries is not widely supported. Systems that support multi-versioning, such as LiveGraph
or Weaver, run an OLAP query on a consistent graph snapshot, and current OLTP queries modify
different vertex and/or edge versions or introduce newer versions. Other systems such as Neo4;j,
while allowing concurrent OLTP and OLAP queries, leave dealing with inconsistencies of OLAP
queries to the client as the default isolation level (read-committed) does not protect such queries
from modification by other queries or even offers repeatable reads. This aspect is potentially rich

"There is usually much more information available on the data layout of a graph database and not its execution engine.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:31

in research and new design opportunities, as it requires fundamental understanding of different
effects that could occur in native graph stores when executing concurrent OLAP and OLTP, anal-
ogously to the effects happening at different isolation levels in RDBMS systems.

Implementing Concurrent Execution. One of the methods for query concurrency are differ-
ent types of locks. For example, WhiteDB provides database wide locking with a reader—writer
lock [207] that enables concurrent readers but only one writer at a time. As an alternative to lock-
ing the whole database, one can also update fields of tuples atomically (set, compare and set, add).
WhiteDB itself does not enforce consistencys; it is up to the user to use locks and atomics correctly.
Another method is based on transactions, used for example by OrientDB that provides distributed
transactions with ACID semantics. We discuss transactions separately in Section 7.3.2. Here, an
interesting research opportunity would be to harness lock-free synchronization protocols known
from parallel computing [38] when implementing different fine-gained OLTP queries.

Optimizing Parallel Execution. Some of the systems that support parallel query execution ex-
plicitly optimize the amount of data communicated when executing such parallelized queries. For
example, the computation in CGE is distributed over the participating processes. To minimize the
amount of all-to-all communication, query results are aggregated locally and—whenever possible—
each process only communicates with a few peers to avoid network congestion. Another way to
minimize communication, used by MS Graph Engine and the underlying Trinity database, is to re-
duce the sizes of data chunks exchanged by processes. For this, Trinity maintains special accessors
that allow for accessing single attributes within a cell without needing to load the complete cell.
This lowers the I/O cost for many operations that do not need the whole cells. Several systems
harness one-sided communication, enabling processes to access one another’s data directly [88].
For example, Trinity can be deployed on InfiniBand [108] to leverage Remote Direct Memory Ac-
cess [88]. Similarly, Cray’s infrastructure makes memory resources of multiple compute nodes
available as a single global address space, also enabling one-sided communication in CGE. This
facilitates parallel programming in a distributed environment [88].

Here a promising research opportunity is to harness established optimized communication rou-
tines such as collectives [52] for large-scale OLAP and BI.

Other Execution Optimizations. The considered databases come with numerous other
system-specific design optimizations. For example, an optimization in ArangoDB’s design allows
us to skip accessing the vertex document and enables directly accessing one edge document
based on the vertex ID within another edge document. This may improve cache efficiency and
thus reduce query execution time [17]. Another example is Oracle Spatial and Graph that offers
an interesting option of switching its data backend based on the query being executed. Specifically,
its in-memory analysis is boosted by the possibility to switch the underlying relational storage
with the native graph storage provided by the PGX processing engine [71, 107, 178]. In such a
configuration, Oracle Spatial and Graph effectively becomes a native graph database. PGX comes
with two variants, PGX.D and PGX.SM, that, respectively, offer distributed and shared-memory
processing capabilities [107]. Furthermore, some systems use the LPG specifics to implement
OLAP queries more effectively. For example, to implement BFS, Weaver uses special designated
properties associated with vertices to indicate, whether a vertex has already been already visited.
Such special properties are not visible to an external user of the graph database and are usually
deallocated after a given query is finalized.

A lot of work has been done into optimizing distributed-memory algebraic operations such as
matrix products using optimal communication routines [86, 90, 127-129, 188, 189]. It would be
interesting to investigate how such routines can be used to speed up OLAP graph queries.

There is a large body of existing work in the design of dynamic graph processing frame-
works [30]. These systems differ from graph databases in several aspects, for example they often

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:32 M. Besta et al.

employ simple graph models (and not LPG or RDF). Simultaneously, they share the fundamental
property of graph databases: dealing with a dynamic graph with evolving structure. Moreover,
different performance analyses indicate that streaming frameworks are much faster (up to
orders of magnitude) than graph databases, especially in the context of raw graph updates per
second [142, 203]. This suggest that harnessing mechanisms used in such frameworks in the
context of graph databases could significantly enhance the performance of the latter and is a
potentially fruitful research direction.

Furthermore, while there exists past research into the impact of the underlying network on
the performance of a distributed graph analytics framework [160], little was done into investigat-
ing this performance relationship in the context of graph database workloads. To the best of our
knowledge, there are no efforts into developing a topology-aware or routing-aware data distribu-
tion scheme for graph databases, especially in the context of recently proposed data center and
high-performance computing network topologies [33, 124] and routing architectures [32].

Finally, contrarily to the general static graph processing and graph streaming, little research ex-
ists into accelerating graph databases using different types of hardware architectures, accelerators,
and hardware-related designs, for example FPGAs [29], designs related to network interface cards
such as SmartNICs [63], or processing in memory [4].

7.3.2 ACID. We also discuss various aspects of ACID transactions. ACID transactions are usu-
ally used to implement OLTP queries. OLAP queries are read-only analytics and thus are less rele-
vant for the notion of ACID. For example, in Weaver, OLAP workloads are referred to as “node pro-
grams” and are treated differently from transactions, which are used to implement OLTP queries.

Support. Overall, support for ACID transactions is widespread in graph databases. However,
there are some differences between respective system classes. For example, all considered doc-
ument and RDBMS graph databases offer full ACID support. Contrarily, only around half of all
considered key-value and wide-column-based systems support ACID transactions. This could be
caused by the fact that some backends have more mature transaction related designs.

Implementation. Two important ways to implement transactions are through locking or time-
stamps. Neo4j uses write locks to protect modifications until they are committed. Weaver uses
timestamps to reorder transactions into an serializable order if necessary. Other systems such as
LiveGraph combine both ways and use timestamps to select the correct version of a vertex/edge
(solving simple read/write conflicts) and vertex locks to deal with concurrent writes.

7.3.3 Support for OLAP and OLTP Queries. We analyze support for OLTP and OLAP. Both cat-
egories are widely supported, but with certain differences across specific backend classes, specifi-
cally, (1) all considered document stores focus solely on OLTP, (2) some RDBMS graph databases
do not support or focus on OLAP, and (3) some native graph databases do not support OLTP. We
conjecture that this is caused by the prevalent historic use cases of these systems and the associated
features of the backend design. For example, document stores have traditionally mostly focused
on maintaining document related data and to answer simple queries instead of running compli-
cated global graph analytics. Thus, it may be very challenging to ensure high performance of such
global workloads on this backend class. Instead, native graph databases work directly with the
graph data model, making it simpler to develop fast traversals and other OLAP workloads. As for
RDBMS, they were traditionally not associated with graph global workloads. However, graph ana-
lytics based on RDBMS has become a separate and growing area of research. Zhao et al. [211] study
the general use of RDBMS for graphs. They define four new relational algebra operations for mod-
eling graph operations. They show how to define these four operations with six smaller building
blocks: basic relational algebra operations, such as group-by and aggregation. Xirogiannopoulos
et al. [208] describe GraphGen, an end-to-end graph analysis framework that is built on top of an

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

Survey and Taxonomy of Graph Databases 31:33

RDBMS. GraphGen supports graph queries through so-called Graph-Views that define graphs as
transformations over underlying relational datasets. This provides a graph modeling abstraction,
and the underlying representation can be optimized independently.

Some document stores still provide at least partial support for traversal-like workloads. For ex-
ample, in ArangoDB, documents are indexed using a hashtable, where the _key attribute serves as
the hashtable key. A traversal over the neighbors of a given vertex works as follows. First, given the
_key of a vertex v, ArangoDB finds all v’s adjacent edges using the hybrid index. Next, the system
retrieves the corresponding edge documents and fetches all the associated _to properties. Finally,
the _to properties serve as the new _key properties when searching for the neighboring vertices.

There are other correlations between supported workloads and system design features. For in-
stance, we observe that systems that do not target OLTP also often do not provide, or focus on,
ACID transactions. This is because ACID is not commonly used with OLAP. Examples include
Cray Graph Engine, RedisGraph, and Graphflow.

There also exist many OLAP graph workloads that have been largely unaddressed by the
design and performance analyses of existing graph database systems. This includes vertex re-
ordering problems (e.g., listing vertices by their degeneracy) or optimization (e.g., graph color-
ing) [31]. There problems were considered in the context of graph algorithms processing simple
graphs, and incorporating rich models such as RDF would further increase complexity and offer
many associated research challenges, for example designing indexes, data layouts, or distribution
strategies.

7.3.4 Supported Languages. We also analyze support for graph query languages. Some types of
backends focus on one specific language: triple stores and SPARQL, document stores and Gremlin,
wide-column stores and Gremlin, RDBMS and SQL. Other classes are not distinctively correlated
with some specific language, although Cypher seems most popular among LPG-based native graph
stores. Usually, the query language support is primarily affected by the supported conceptual graph
model; if it is RDF, then the system usually supports SPARQL while systems focusing on LPG often
support Cypher or Gremlin.

Several systems come with their own languages or variants of the established ones. For example,
in MS Graph Engine, cells are associated with a schema that is defined using the Trinity Specifica-
tion Language (TSL) [184]. TSL enables defining the structure of cells similarly to C-structs. For
example, a cell can hold data items of different data types, including IDs of other cells. Moreover,
querying graphs in Oracle Spatial and Graph is possible using PGQL [204], a declarative, SQL-like,
graph pattern matching query language. PGQL is designed to match the hybrid structure of Oracle
Spatial and Graph, and it allows for querying both data stored on disk in Oracle Database as well
as in in-memory parts of graph datasets.

Besides their primary language, systems also offer support for additional language functionali-
ties. For example, Oracle Spatial and Graph also supports SQL and SPARQL (for RDF graphs). More-
over, the offered Java API implements Apache Tinkerpop interfaces, including the Gremlin APL

7.4 Insights for Practitioners

An important question on whether RDBMS or non-relational native graph backends are more suit-
able for graph workloads is far from being fully answered. Several analyses [3, 77, 114, 162, 199]—
including very recent ones [196]—indicate better performance of RDBMS over native graph data-
base designs. However, these analyses focus on systems designed with a single class of workloads
in mind (e.g., OLAP analytics) and on homogeneous graphs without rich additional label and prop-
erty data. Thus, they are not conclusive for more realistic scenarios where a mix of OLAP, OLTP,
and BI workloads runs over rich LPG datasets. This is supported by another recent study, which

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

31:34 M. Besta et al.

states that “the workloads (...) require several storage and processing features that existing RDBMSs
are generally not optimized for” [79].

In general, whenever the data schema is known in advance, RDBMS—with its long-standing
history of optimizations for such cases—would be a preferable choice. Contrarily, when the data
schema is not known, graph databases would most probably offer more performance.

Overall, systems based on non-graph data models, such as RDBMS or—to a certain degree—
others (e.g., document stores) offer most mature designs and well-understood behavior related to
different isolation levels. As such, these systems are the best option when one needs a system that
offers predictable behavior in the first place, and reasonable performance for standard workloads.
However, when one aims at highest performance of purely graph workloads, it is worth consider-
ing native graph stores. This is especially the case for the most recent graph workload classes that
are only now being introduced in the GDB landscape, such as subgraph queries [146].

8 CONCLUSION

Graph databases constitute an important area of academic research and different industry efforts.
They are used to maintain, query, and analyze numerous datasets in different domains in industry
and academia. Many graph databases of different types have been developed. They use many data
models and representations, they are constructed using miscellaneous design choices, and they
enable a large number of queries and workloads. In this work, we provide the first survey and
taxonomy of this rich graph database landscape. Our work can be used not only by researchers
willing to learn more about this fascinating subject but also by architects, developers, and project
managers who want to select the most advantageous graph database system or design.

REFERENCES

[1] Daniel J. Abadi et al. 2007. Scalable semantic web data management using vertical partitioning. In VLDB. 411-422.
[2] Sunitha Abburu and Suresh Babu Golla. 2015. Effective partitioning and multiple RDF indexing for database triple
store. Eng. 7. 19, 5 (2015), 139-154.
[3] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Notzli, et al. 2017. EmptyHeaded: A relational engine for
graph processing. ACM Trans. Database Syst. 42, 4, Article 20 (2017), 44 pages. https://doi.org/10.1145/3129246
[4] Junwhan Ahn et al. 2015. A scalable processing-in-memory accelerator for parallel graph processing. In ACM ISCA.
105-117. https://doi.org/10.1145/2749469.2750386
[5] Amazon. Amazon Neptune. Retrieved from https://aws.amazon.com/neptune/.
[6] Renzo Angles et al. 2014. The Linked Data Benchmark Council: A graph and RDF industry benchmarking effort.
ACM SIGMOD Rec. 43, 1 (2014), 27-31.
[7] Renzo Angles, Marcelo Arenas, Pablo Barcelo, et al. 2018. G-CORE: A core for future graph query languages. In ACM
SIGMOD. 1421-1432.
[8] Renzo Angles, Marcelo Arenas, Pablo Barcel6, Aidan Hogan, et al. 2017. Foundations of modern query languages for
graph databases. ACM Comput. Surv. 50, 5, Article 68 (2017), 40 pages. https://doi.org/10.1145/3104031
[9] Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database models. ACM Comput. Surv. 40, 1, Article 1
(2008), 39 pages. https://doi.org/10.1145/1322432.1322433
[10] Renzo Angles and Claudio Gutierrez. 2018. An introduction to graph data management. In Graph Data Management,
Fundamental Issues and Recent Developments. 1-32.
[11] Renzo Angles, Aidan Hogan, Ora Lassila, et al. 2022. Multilayer graphs: A unified data model for graph databases. In
ACM GRADES-NDA. Article 11, 6 pages.
Apache. Apache Cassandra. Retrieved from https://cassandra.apache.org/.
Apache. Apache Giraph. Retrieved from https://giraph.apache.org/.
Apache. Apache Mormotta. Retrieved from http://marmotta.apache.org/.
Apache. Apache Solr. Retrieved from https://solr.apache.org/.
ArangoDB Inc. ArangoDB. Retrieved from https://www.arangodb.com/docs/stable/data-models.html.
ArangoDB Inc. ArangoDB: Index free adjacency or hybrid indexes for graph databases. Retrieved from https://www.
arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://doi.org/10.1145/3129246
https://doi.org/10.1145/2749469.2750386
https://aws.amazon.com/neptune/
https://doi.org/10.1145/3104031
https://doi.org/10.1145/1322432.1322433
https://cassandra.apache.org/
https://giraph.apache.org/
http://marmotta.apache.org/
https://solr.apache.org/
https://www.arangodb.com/docs/stable/data-models.html
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/

Survey and Taxonomy of Graph Databases 31:35

[18] Timothy G. Armstrong et al. 2013. LinkBench: A database benchmark based on the Facebook social graph. In ACM
SIGMOD. 1185-1196.

[19] Malcolm Atkinson, David DeWitt, David Maier, Francois Bancilhon, et al. 1990. The object-oriented database system
manifesto. In DOOD. 223-240. https://doi.org/10.1016/B978-0-444-88433-6.50020-4

[20] Paolo Atzeni and Valeria De Antonellis. 1993. Relational Database Theory.

[21] Aurelius. Titan data model. Retrieved from http://s3.thinkaurelius.com/docs/titan/1.0.0/data-model.html.

[22] AWS. 2022. Columnar storage developer guide. Retrieved from https://docs.aws.amazon.com/redshift/latest/dg/c_
columnar_storage_disk_mem_mgmnt.html.

[23] Song Bai, Feihu Zhang, and Philip H. S. Torr. 2021. Hypergraph convolution and hypergraph attention. Pattern Recogn.
110 (2021), 107637. https://doi.org/10.1016/j.patcog.2020.107637

[24] Alexandru T. Balaban. 1985. Applications of graph theory in chemistry. J. Chem. Inf. Comput. Sci. 25, 3 (1985),
334-343.

[25] Sumita Barahmand and Shahram Ghandeharizadeh. 2013. BG: A benchmark to evaluate interactive social networking
actions. In CIDR.

[26] Daniel Bartholomew. 2012. Mariadb vs. MySQL. Dostopano 7, 10 (2012), 2014.

[27] Omar Batarfi et al. 2015. Large scale graph processing systems: Survey and an experimental evaluation. Cluster
Computing 18, 3 (2015), 1189-1213.

[28] Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP benchmark suite. arXiv:1508.03619. Retrieved
from https://arxiv.org/abs/1508.03619.

[29] Maciej Besta, Dimitri Stanojevic, Johannes De Fine Licht, Tal Ben-Nun, and Torsten Hoefler. Graph processing on
FPGAs: Taxonomy, survey, challenges. arXiv:1903.06697. Retrieved from https://arxiv.org/abs/1903.06697.

[30] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoefler. 2019. Practice of streaming
processing of dynamic graphs: Concepts, models, and systems. arXiv:1912.12740. Retrieved from https://arxiv.org/
abs/1912.12740.

[31] Maciej Besta et al. 2020. High-performance parallel graph coloring with strong guarantees on work, depth, and
quality. In ACM/IEEE SC.

[32] Maciej Besta et al. 2021. High-performance routing with multipathing and path diversity in ethernet and HPC net-
works. IEEE Trans. Parallel Distrib. Syst. 32, 4 (2021), 943-959. https://doi.org/10.1109/TPDS.2020.3035761

[33] Maciej Besta and Torsten Hoefler. 2014. Slim Fly: A cost effective low-diameter network topology. In ACM/IEEE SC.
348-359. https://doi.org/10.1109/SC.2014.34

[34] Maciej Besta, Michat Podstawski, Linus Groner, Edgar Solomonik, and Torsten Hoefler. 2017. To push or to pull:
On reducing communication and synchronization in graph computations. In ACM HPDC. 93-104. https://doi.org/10.
1145/3078597.3078616

[35] Maciej Besta, Zur Vonarburg-Shmaria, Yannick Schaffner, Leonardo Schwarz, Grzegorz Kwasniewski, Lukas Giani-
nazzi, Jakub Beranek, Kacper Janda, Tobias Holenstein, Sebastian Leisinger, et al. 2021. GraphMineSuite: Enabling
high-performance and programmable graph mining algorithms with set algebra. Proc. VLDB Endow. 14, 11 (2021),
1922-1935. https://doi.org/10.14778/3476249.3476252

[36] Bitnine Global Inc. AgensGraph. Retrieved from https://bitnine.net/agensgraph/.

[37] Blazegraph. BlazeGraph DB. Retrieved from https://www.blazegraph.com/.

[38] Guy E. Blelloch and Bruce M. Maggs. 2010. Parallel algorithms. In Algorithms and Theory of Computation Handbook:
Special Topics and Techniques.

[39] Scott Boag, Don Chamberlin, Mary F Fernandez, Daniela Florescu, Jonathan Robie, Jérome Siméon, and Mugur Ste-
fanescu. 2007. XQuery 1.0: An XML Query Language. World Wide Web Consortium.

[40] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered label propagation: A multiresolution
coordinate-free ordering for compressing social networks. In ACM WWW. 587-596. https://doi.org/10.1145/1963405.
1963488

[41] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018. Querying graphs. Synth. Lect. Data
Manage. 10, 3 (2018), 1-184.

[42] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 2 (2001), 163-177.

[43] Tim Bray. 2014. The JavaScript Object Notation (JSON) Data Interchange Format. REC 7159.

[44] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and Franois Yergeau. 2008. Extensible markup lan-
guage (XML) 1.0. https://www.w3.0rg/TR/2008/REC-xml-20081126/.

[45] Jeen Broekstra et al. 2002. Sesame: A generic architecture for storing and querying RDF and RDF schema. In ISWC.
54-68.

[46] Callidus Software Inc. OrientDB. Retrieved from https://orientdb.com.

[47] Callidus Software Inc. OrientDB: Lightweight edges. Retrieved from https://orientdb.com/docs/3.0.x/java/
Lightweight-Edges.html.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://doi.org/10.1016/B978-0-444-88433-6.50020-4
http://s3.thinkaurelius.com/docs/titan/1.0.0/data-model.html
https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html
https://doi.org/10.1016/j.patcog.2020.107637
https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/1903.06697
https://arxiv.org/abs/1912.12740
https://doi.org/10.1109/TPDS.2020.3035761
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.14778/3476249.3476252
https://bitnine.net/agensgraph/
https://www.blazegraph.com/
https://doi.org/10.1145/1963405.1963488
https://www.w3.org/TR/2008/REC-xml-20081126/
https://orientdb.com
https://orientdb.com/docs/3.0.x/java/Lightweight-Edges.html

31:36 M. Besta et al.

[48] Cambridge Semantics. AnzoGraph. Retrieved from https://www.cambridgesemantics.com/product/anzograph/.

[49] Mihai Capotd, Tim Hegeman, Alexandru Iosup, et al. 2015. Graphalytics: A big data benchmark for graph-processing
platforms. In ACM GRADES. https://doi.org/10.1145/2764947.2764954

[50] Arnaud Castelltort et al. 2013. Representing history in graph-oriented NoSQL databases: A versioning system. In
IEEE ICDIM. 228-234.

[51] Cayley. CayleyGraph. Retrieved from https://cayley.io/ and https://github.com/cayleygraph/cayley.

[52] Ernie Chan et al. 2007. Collective communication: Theory, practice, and experience. Concurr. Comput.: Pract. Exper.
19, 13 (2007), 1749-1783.

[53] Marek Ciglan, Alex Averbuch, et al. 2012. Benchmarking traversal operations over graph databases. In IEEE ICDE
Workshops. 186-189.

[54] James Clark and Steve DeRose. 1999. XML Path Language (XPath) Version 1.0. World Wide Web Consortium.

[55] Edgar F. Codd. 1989. Relational database: A practical foundation for productivity. In Readings in Artificial Intelligence
and Databases. 60-68.

[56] Douglas Comer. 1979. The ubiquitous B-tree. ACM Comput. Surv. 11, 2 (1979), 17. https://doi.org/10.1145/356770.

356776

Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 Concepts and abstract syntax.

DataStax, Inc. DSE graph (DataStax). Retrieved from https://www.datastax.com/.

Chris J. Date and Hugh Darwen. 1987. A Guide to the SQL Standard. Vol. 3.

Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A survey on NoSQL stores. ACM Comput. Surv. 51, 2, Article 40

(2018), 43 pages. https://doi.org/10.1145/3158661

Dgraph Labs Inc. BadgerDB. Retrieved from https://dbdb.io/db/badgerdb.

Dgraph Labs Inc. Dgraph. Retrieved from https://dgraph.io/ and https://dgraph.io/docs/.

Salvatore Di Girolamo et al. 2019. Network-accelerated non-contiguous memory transfers. In ACM/IEEE SC. https:

//doi.org/10.1145/3295500.3356189

[64] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 1 (1959), 269-271. https:
//doi.org/10.1007/BF01386390

[65] Niels Doekemeijer and Ana Lucia Varbanescu. 2014. A Survey of Parallel Graph Processing Frameworks. Technical
Report. Delft University of Technology.

[66] David Dominguez-Sal et al. 2010. Survey of graph database performance on the HPC scalable graph analysis bench-
mark. In WAIM. 37-48.

[67] Ayush Dubey et al. 2016. Weaver: A high-performance, transactional graph database based on refinable timestamps.
Proc. VLDB Endow. 9, 11 (2016), 852-863. https://doi.org/10.14778/2983200.2983202

[68] Paul DuBois. 1999. MySQL. New Riders Publishing.

[69] William Eberle, Jeffrey Graves, et al. 2010. Insider threat detection using a graph-based approach. J. Appl. Secur. Res.
6,1(2010), 32-81.

[70] David Ediger, Rob McColl, Jason Riedy, and David A. Bader. 2012. STINGER: High performance data structure for
streaming graphs. In IEEE HPEC. 1-5.

[71] Hamid El Maazouz, Guido Wachsmuth, Martin Sevenich, et al. 2019. A DSL-based framework for performance as-

sessment. In EMENA-ISTL. 260-270.

Elastic. Elasticsearch. Retrieved from https://www.elastic.co/elasticsearch/.

Ramez Elmasri et al. 2011. Advantages of distributed databases. In Fundamentals of Database Systems, 6th Edition.

Chapter 25.1.5, 882.

[74] Ramez Elmasri and Shamkant B. Navathe. 2011. Data fragmentation. In Fundamentals of Database Systems, 6th Edition.

Chapter 25.4.1, 894-897.

Orri Erling, Alex Averbuch, Josep Larriba-Pey, et al. 2015. The LDBC social network benchmark: Interactive workload.

In ACM SIGMOD. 619-630.

[76] FactNexus. GraphBase. Retrieved from https://graphbase.ai/.

[77] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. 2015. The case against specialized graph analytics engines.
In CIDR.

[78] Fauna. FaunaDB. Retrieved from https://fauna.com/.

[79] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoglu. 2023. KUZU graph database management
system. In CIDR.

[80] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, et al. 2023. A researcher’s
digest of GQL. In ICDT. 1:1-1:22. https://doi.org/10.4230/LIPIcs.ICDT.2023.1

[81] Nadime Francis, Alastair Green, Paolo Guagliardo, et al. 2018. Cypher: An evolving query language for property
graphs. In ACM SIGMOD. 1433-1445.

[82] Franz Inc. AllegroGraph. Retrieved from https://allegrograph.com/products/allegrograph/.

— ==
[=)=
W DN =
[t i/ R

[72
(73

[t}

(75

[’

[

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://www.cambridgesemantics.com/product/anzograph/
https://doi.org/10.1145/2764947.2764954
https://cayley.io/
https://github.com/cayleygraph/cayley
https://doi.org/10.1145/356770.356776
https://www.datastax.com/
https://doi.org/10.1145/3158661
https://dbdb.io/db/badgerdb
https://dgraph.io/
https://dgraph.io/docs/
https://doi.org/10.1145/3295500.3356189
https://doi.org/10.1007/BF01386390
https://doi.org/10.14778/2983200.2983202
https://www.elastic.co/elasticsearch/
https://graphbase.ai/
https://fauna.com/
https://doi.org/10.4230/LIPIcs.ICDT.2023.1
https://allegrograph.com/products/allegrograph/

Survey and Taxonomy of Graph Databases 31:37

[83] Santhosh Kumar Gajendran. 2012. A Survey on NoSQL Databases. Technical Report. University of Illinois.
[84] Hector Garcia-Molina, Jeffrey D. Ullman, et al. 2002. Data replication. In Database Systems: The Complete Book, 1st
Edition. Chapter 19.4.3, 1021.
[85] Ewout Gelling, George Fletcher, and Michael Schmidt. 2023. Bridging graph data models: RDF, RDF-star, and property
graphs as directed acyclic graphs. Retrieved from https://arxiv.org/abs/2304.13097.
[86] Evangelos Georganas et al. 2012. Communication avoiding and overlapping for numerical linear algebra. In
ACM/IEEE SC.
[87] Lars George. 2011. HBase: The Definitive Guide.
[88] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2014. Enabling highly-scalable remote memory access
programming with MPI-3 one sided. Sci. Program. 22, 2 (2014), 75-91.
[89] Lukas Gianinazzi et al. 2018. Communication-avoiding parallel minimum cuts and connected components. ACM
SIGPLAN Not. 53, 1 (2018), 219-232. https://doi.org/10.1145/3200691.3178504
[90] Niels Gleinig, Maciej Besta, and Torsten Hoefler. 2022. I/O-optimal cache-oblivious sparse matrix-sparse matrix mul-
tiplication. In IEEE IPDPS. 36-46.
[91] Google. Graphd. Retrieved from https://github.com/google/graphd.
[92] Graph Story Inc. Graph story. Retrieved from https://github.com/graphstory.
[93] Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, et al. 2019. Updating graph
databases with Cypher. Proc. VLDB Endow. 12, 12 (2019), 2242-2254. https://doi.org/10.14778/3352063.3352139
[94] Alastair Green, Martin Junghanns, Max Kief3ling, et al. 2018. openCypher: New directions in property graph querying.
In EDBT. 520-523.
[95] L. Guzenda. 2000. Objectivity/DB — A high performance object database architecture. In HIPOD.
[96] Jing Han, E. Haihong, Guan Le, and Jian Du. 2011. Survey on NoSQL database. In IEEE ICPCA. 363-366.
[97] Minyang Han, Khuzaima Daudjee, Khaled Ammar, et al. 2014. An experimental comparison of Pregel-like graph
processing systems. Proc. VLDB Endow. 7, 12 (2014), 1047-1058. https://doi.org/10.14778/2732977.2732980
[98] Andreas Harth et al. 2007. YARS2: A federated repository for querying graph structured data from the web. In
ISWC/ASWC.
[99] Olaf Hartig. 2014. Reconciliation of RDF* and property graphs. arXiv:1409.3288. Retrieved from https://arxiv.org/
abs/1409.3288.
[100] Olaf Hartig. 2017. RDF* and SPARQL": An alternative approach to annotate statements in RDF. In ISWC (Poster).
[101] Olaf Hartig. 2019. Foundations to query labeled property graphs using SPARQL*. In SEM4TRA-AMAR.
[102] Olaf Hartig and Jorge Pérez. 2018. Semantics and complexity of GraphQL. In WWW. 1155-1164. https://doi.org/10.
1145/3178876.3186014
[103] Jonathan Hayes. 2004. A Graph Model for RDF. Diploma Thesis. Technische Universitat Darmstadt, Universidad de
Chile.
[104] Joseph M. Hellerstein and Michael Stonebraker. 2005. Readings in Database Systems.
[105] Jeffrey A. Hoffer, Venkataraman Ramesh, and Heikki Topi. 2011. Modern Database Management.
[106] Florian Holzschuher and René Peinl. 2013. Performance of graph query languages: Comparison of Cypher, Gremlin
and native access in Neo4j. In EDBT. 195-204. https://doi.org/10.1145/2457317.2457351
[107] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, et al. 2015. PGX.D: A fast distributed graph
processing engine. In ACM/IEEE SC. https://doi.org/10.1145/2807591.2807620
InfiniBand Trade Association. 2015. InfiniBand: Architecture specification 1.3.
InfoGrid. The InfoGrid graph database. Retrieved from http://infogrid.org.
Borislav Iordanov. 2010. HyperGraphDB: A generalized graph database. In WAIM. 25-36.
Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-Pérez, Thomas Manhardto, Hassan
Chafio, Mihai Capota, Narayanan Sundaram, Michael Anderson, Ilie Gabriel Tanase, et al. 2016. LDBC graphalytics:
A benchmark for large-scale graph analysis on parallel and distributed platforms. Proc. VLDB Endow. 9, 13 (2016),
1317-1328. https://doi.org/10.14778/3007263.3007270
[112] Jesus Barrasa. 2017. RDF triple stores vs. labeled property graphs: What’s the difference? Retrieved from https://
neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/.
[113] Bin Jiang. 2011. A short note on data-intensive geospatial computing. In Information Fusion and Geographic Informa-
tion Systems. 13-17.
[114] Alekh Jindal, Samuel Madden, Malu Castellanos, and Meichun Hsu. 2015. Graph analytics using Vertica relational
database. In IEEE Big Data. 1191-1200. https://doi.org/10.1109/BigData.2015.7363873
[115] Salim Jouili and Valentin Vansteenberghe. 2013. An empirical comparison of graph databases. In IEEE SocialCom.
708-715.
[116] Martin Junghanns, André Petermann, Martin Neumann, and Erhard Rahm. 2017. Management and analysis of big
graph data: Current systems and open challenges. In Handbook of Big Data Technologies. 457-505.

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://arxiv.org/abs/2304.13097
https://doi.org/10.1145/3200691.3178504
https://github.com/google/graphd
https://github.com/graphstory
https://doi.org/10.14778/3352063.3352139
https://doi.org/10.14778/2732977.2732980
https://arxiv.org/abs/1409.3288
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1145/2457317.2457351
https://doi.org/10.1145/2807591.2807620
http://infogrid.org
https://doi.org/10.14778/3007263.3007270
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://doi.org/10.1109/BigData.2015.7363873

31:38 M. Besta et al.

[117] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. 2017. High-level programming abstractions for distributed graph
processing. IEEE Trans. Knowl. Data Eng. 30, 2 (2017), 305-324.

[118] R. Kumar Kaliyar. 2015. Graph databases: A survey. In IEEE ICCCA. 785-790.

[119] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. 2012. GBase: An efficient analysis
platform for large graphs. VLDB 7. 21, 5 (2012), 637-650. https://doi.org/10.1007/s00778-012-0283-9

[120] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, et al. 2017. Graphflow: An active graph
database. In ACM SIGMOD. 1695-1698. https://doi.org/10.1145/3035918.3056445

[121] Michael Kay. 2001. XSLT Programmer’s Reference.

[122] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Bulug, Franz Franchetti, et al. 2016. Mathematical foundations

of the GraphBLAS. In IEEE HPEC. 1-9.

Vaibhav Khadilkar et al. 2012. Jena-HBase: A distributed, scalable and efficient RDF triple store. In ISWC (Poster).

85-88.

[124] JohnKim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-driven, highly-scalable dragonfly topology.
In IEEE ISCA. 77-88. https://doi.org/10.1109/ISCA.2008.19

[125] Vojtech Kolomicenko. 2013. Analysis and Experimental Comparison of Graph Databases. Master’s Thesis. Charles
University in Prague.

[126] Vijay Kumar and Anjan Babu. 2015. Domain suitable graph database selection: A preliminary report. In ICAESAM.
26-29.

[127] Grzegorz Kwasniewski et al. 2019. Red-blue pebbling revisited: Near optimal parallel matrix-matrix multiplication.
In ACM/IEEE SC. https://doi.org/10.1145/3295500.3356181

[128] Grzegorz Kwasniewski et al. 2021. On the parallel I/O optimality of linear algebra kernels: Near-optimal LU factor-
ization. In ACM PPoPP. 463—-464. https://doi.org/10.1145/3437801.3441590

[129] Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu, Timo Schneider, Alexandros Nikolaos
Ziogas, Maciej Besta, and Torsten Hoefler. 2021. Pebbles, graphs, and a pinch of combinatorics: Towards tight I/O
lower bounds for statically analyzable programs. In ACM SPAA. 328-339. https://doi.org/10.1145/3409964.3461796

[130] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized structured storage system. ACM SIGOPS
Oper. Syst. Rev. 44, 2 (April 2010), 35-40. https://doi.org/10.1145/1773912.1773922

[131] LambdaZen LLC. Bitsy. Retrieved from https://github.com/lambdazen/bitsy and https://bitbucket.org/lambdazen/
bitsy/wiki/Home.

[132] Ora Lassila et al. 2023. The OneGraph vision: Challenges of breaking the graph model lock-in. Semant. Web 14,
1(2023), 125-134.

[133] Matteo Lissandrini et al. 2017. An Evaluation Methodology and Experimental Comparison of Graph Databases. Tech-
nical Report. University of Trento.

[134] Matteo Lissandrini, Martin Brugnara, et al. 2018. Beyond macrobenchmarks: Microbenchmark-based graph database
evaluation. Proc. VLDB Endow. 12, 4 (2018), 390-403. https://doi.org/10.14778/3297753.3297759

[135] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan W. Berry. 2007. Challenges in parallel graph
processing. Par. Proc. Let. 17, 1 (2007), 5-20.

[136] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, et al. 2010. Pregel: A system for large-scale graph processing.
In ACM SIGMOD. 135-146. https://doi.org/10.1145/1807167.1807184

[137] MariaDB. OQGRAPH. Retrieved from https://mariadb.com/kb/en/oqgraph-storage-engine/.

[138] MarkLogic Corporation. MarkLogic. Retrieved from https://www.marklogic.com.

[139] Norbert Martinez-Bazan, M. Angel Aguila Lorente, et al. 2012. Efficient graph management based on bitmap indices.
In ACM IDEAS. 110-119. https://doi.org/10.1145/2351476.2351489

[140] Jozsef Marton, Gabor Szarnyas, and Daniel Varro. 2017. Formalising openCypher graph queries in relational algebra.
In ADBIS. 182-196.

[141] Kristyn J. Maschhoff, Robert Vesse, et al. 2017. Quantifying performance of CGE: A unified scalable pattern mining
and search system. In CUG.

[142] Robert Campbell McColl, David Ediger, Jason Poovey, et al. 2014. A performance evaluation of open source graph
databases. In ACM PPAA. 11-18. https://doi.org/10.1145/2567634.2567638

[143] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a vertex: A survey of vertex-centric
frameworks for large-scale distributed graph processing. ACM Comput. Surv. 48, 2, Article 25 (2015), 39 pages. https:
//doi.org/10.1145/2818185

[144] Memgraph Ltd. Memgraph. Retrieved from https://memgraph.com/.

[145] Scott M. Meyer, Jutta Degener, et al. 2010. Optimizing schema-last tuple-store queries in Graphd. In ACM SIGMOD.
1047-1056. https://doi.org/10.1145/1807167.1807283

[146] Amine Mhedhbi et al. 2021. LSQB: A large-scale subgraph query benchmark. In ACM GRADES-NDA. https://doi.org/
10.1145/3461837.3464516

—

[123

[t

[t

[l

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://doi.org/10.1007/s00778-012-0283-9
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1145/3437801.3441590
https://doi.org/10.1145/3409964.3461796
https://doi.org/10.1145/1773912.1773922
https://github.com/lambdazen/bitsy
https://bitbucket.org/lambdazen/bitsy/wiki/Home
https://doi.org/10.14778/3297753.3297759
https://doi.org/10.1145/1807167.1807184
https://mariadb.com/kb/en/oqgraph-storage-engine/
https://www.marklogic.com
https://doi.org/10.1145/2351476.2351489
https://doi.org/10.1145/2567634.2567638
https://doi.org/10.1145/2818185
https://memgraph.com/
https://doi.org/10.1145/1807167.1807283
https://doi.org/10.1145/3461837.3464516

Survey and Taxonomy of Graph Databases 31:39

[147] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing subgraph queries by combining binary and worst-case opti-
mal joins. Proc. VLDB Endow. 12, 11 (2019), 1692-1704. https://doi.org/10.14778/3342263.3342643

[148] Microsoft. Azure Cosmos DB. Retrieved from https://azure.microsoft.com/en-us/products/cosmos-db/.

[149] Microsoft. Microsoft SQL server 2017. Retrieved from https://www.microsoft.com/en-us/sql-server/sql-server-2017.

[150] Bruce Momjian. 2001. PostgreSQL: Introduction and Concepts. Vol. 192, (2001).

[151] Thomas Mueller. 2005. H2 database engine. (2005). Retrieved from http://www.h2database.com.

[152] Networked Planet Limited. BrightstarDB. Retrieved from http://brightstardb.com/.

[153] Thomas Neumann and Gerhard Weikum. 2010. X-RDF-3X: Fast querying, high update rates, and consistency for RDF
databases. Proc. VLDB Endow. 3, 1-2 (2010), 256—-263. https://doi.org/10.14778/1920841.1920877

[154] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal join algorithms. J. ACM 65,

3, Article 16 (2018), 40 pages. https://doi.org/10.1145/3180143

[155] Objectivity Inc. ThingSpan. Retrieved from https://www.objectivity.com/products/thingspan/.

[156] Mike Olson, Keith Bostic, and Margo Seltzer. 1999. Berkeley DB. In USENIX ATC.

[157] Ontotext. GraphDB. Retrieved from https://www.ontotext.com/products/graphdb/.

[158] OpenLink. Virtuoso. Retrieved from https://virtuoso.openlinksw.com/.

[159] Oracle. Oracle Spatial and Graph. Retrieved from https://www.oracle.com/database/technologies/spatialandgraph.

html.

[160] Kay Ousterhout et al. 2015. Making sense of performance in data analytics frameworks. In NSDI. 293-307.

[161] M. Tamer Ozsu. 2016. A survey of RDF data management systems. Front. Comput. Sci. 10, 3 (2016), 418-432.

[162] Anil Pacaci et al. 2017. Do we need specialized graph databases? Benchmarking real-time social networking applica-
tions. In ACM GRADES. Article 12, 7 pages. https://doi.org/10.1145/3078447.3078459

[163] Lawrence Page, Sergey Brin, Rajeev Motwani, et al. 1999. The PageRank Citation Ranking: Bringing Order to the Web.
Technical Report. Stanford InfoLab.

[164] N.S. Patil, P Kiran, et al. 2018. A survey on graph database management techniques for huge unstructured data. Int.
J. Electr. Comput. Eng. 8, 2 (2018), 1140-1149.

[165] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and complexity of SPARQL. ACM Trans. Data-

base Syst. 34, 3, Article 16 (2009), 45 pages. https://doi.org/10.1145/1567274.1567278

Tomasz Pluskiewicz. 2022. RDF String. Retrieved from https://github.com/tpluscode/rdf-string.

Jaroslav Pokorny. 2015. Graph databases: Their power and limitations. In CISIM. 58-69.

Profium. Profium sense. Retrieved from https://www.profium.com/en/products/graph-database/.

Roshan Punnoose, Adina Crainiceanu, and David Rapp. 2012. Rya: A scalable RDF triple store for the clouds. In

Cloud-I. Article 4, 8 pages. https://doi.org/10.1145/2347673.2347677

[170] Ashish Rana. 2019. Detailed Introduction: Redis Modules, from Graphs to Machine Learning (Part 1). Retrieved from
https://medium.com/@ashishrana160796/15ce9{t1949f.

[171] Redis Labs. Redis. Retrieved from https://redis.io/.

[172] Redis Labs. RedisGraph. Retrieved from https://redis.io/docs/stack/graph/.

[173] Christopher D. Rickett, Utz-Uwe Haus, James Maltby, et al. 2018. Loading and querying a trillion RDF triples with
Cray Graph Engine on the Cray XC. In CUG.

[174] Robert Yokota. HGraphDB. Retrieved from https://github.com/rayokota/hgraphdb.

[175] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph database internals. In Graph Databases, 2nd Edition. 149-170.

[176] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language. In DBPL. 1-10. https://doi.org/10.
1145/2815072.2815073

[177] Shahin Roozkhosh, Denis Hoornaert, Ju Hyoung Mun, Tarikul Islam Papon, Ahmed Sanaullah, Ulrich Drepper, Re-
nato Mancuso, and Manos Athanassoulis. 2021. Relational memory: Native in-memory accesses on rows and columns.
arXiv:2109.14349. Retrieved from https://arxiv.org/abs/2109.14349.

[178] Nicholas P. Roth, Vasileios Trigonakis, Sungpack Hong, et al. 2017. PGX.D/Async: A scalable distributed graph pat-

tern matching engine. In ACM GRADES. https://doi.org/10.1145/3078447.3078454

Michael Rudolf et al. 2013. The graph story of the SAP HANA database. In Datenbanksysteme fiir Business, Technologie

und Web. 403-420.

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, et al. 2017. The ubiquity of large graphs and surprising challenges

of graph processing. Proc. VLDB Endow. 11, 4 (2017), 420—-431.

[181] SAP. SAP HANA. Retrieved from https://www.sap.com/products/technology-platform/hana.html.

[182] Y. Sasaki, G. Fletcher, and O. Makoto. 2022. Language-aware indexing for conjunctive path queries. In IEEE ICDE.
661-673.

[183] Satu Elisa Schaeffer. 2007. Survey: Graph clustering. Comput. Sci. Rev. 1, 1 (2007), 27-64. https://doi.org/10.1016/j.
cosrev.2007.05.001

(179

—

(180

—

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://doi.org/10.14778/3342263.3342643
https://azure.microsoft.com/en-us/products/cosmos-db/
https://www.microsoft.com/en-us/sql-server/sql-server-2017
http://www.h2database.com
http://brightstardb.com/
https://doi.org/10.14778/1920841.1920877
https://doi.org/10.1145/3180143
https://www.objectivity.com/products/thingspan/
https://www.ontotext.com/products/graphdb/
https://virtuoso.openlinksw.com/
https://www.oracle.com/database/technologies/spatialandgraph.html
https://doi.org/10.1145/3078447.3078459
https://doi.org/10.1145/1567274.1567278
https://github.com/tpluscode/rdf-string
https://www.profium.com/en/products/graph-database/
https://doi.org/10.1145/2347673.2347677
https://medium.com/@ashishrana160796/15ce9ff1949f
https://redis.io/
https://redis.io/docs/stack/graph/
https://github.com/rayokota/hgraphdb
https://doi.org/10.1145/2815072.2815073
https://arxiv.org/abs/2109.14349
https://doi.org/10.1145/3078447.3078454
https://www.sap.com/products/technology-platform/hana.html
https://doi.org/10.1016/j.cosrev.2007.05.001

31:40 M. Besta et al.

[184] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A distributed graph engine on a memory cloud. In ACM SIGMOD.
505-516.

[185] Sanjay Sharma. 2014. Cassandra Design Patterns.

[186] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and Qiang-Sheng Hua. 2018. Graph pro-
cessing on GPUs: A survey. ACM Comput. Surv. 50, 6, Article 81 (2018), 35 pages. https://doi.org/10.1145/3128571

[187] solid IT gmbh. System properties comparison: Neo4j vs. Redis. Retrieved from https://db-engines.com/en/system/
Neo4j%3BRedis.

[188] Edgar Solomonik, Erin Carson, Nicholas Knight, and James Demmel. 2014. Tradeoffs between synchronization, com-
munication, and computation in parallel linear algebra computations. In ACM SPAA. 307-318. https://doi.org/10.
1145/2612669.2612671

[189] Edgar Solomonik and Torsten Hoefler. 2015. Sparse tensor algebra as a parallel programming model. arXiv:1512.00066.
Retrieved from https://arxiv.org/abs/1512.00066.

[190] Stardog Union. 2018. Stardog. Retrieved from https://www.stardog.com/.

[191] Benjamin A. Steer, Alhamza Alnaimi, Marco A. B. F. G. Lotz, et al. 2017. Cytosm: Declarative property graph queries
without data migration. In ACM GRADES. https://doi.org/10.1145/3078447.3078451

[192] Wen Sun, Achille Fokoue, Kavitha Srinivas, et al. 2015. SQLGraph: An efficient relational-based property graph store.
In ACM SIGMOD. 1887-1901. https://doi.org/10.1145/2723372.2723732

[193] Gabor Szarnyas et al. 2018. An early look at the LDBC social network benchmark’s business intelligence workload.
In ACM GRADES-NDA. https://doi.org/10.1145/3210259.3210268

[194] Gabor Szarnyas et al. 2022. The LDBC social network benchmark: Business intelligence workload. Proc. VLDB Endow.
16, 4 (2022), 877-890. https://doi.org/10.14778/3574245.3574270

[195] Ruben Taelman. 2022. RDF String Turtle. Retrieved from https://github.com/rubensworks/rdf-string-ttljs.

[196] Daniel ten Wolde, Tavneet Singh, Gabor Szarnyas, and Peter Boncz. 2023. DuckPGQ: Efficient property graph queries
in an analytical RDBMS. In CIDR.

[197] The Apache Software Foundation. 2021. Apache Jena TBD. Retrieved from https://jena.apache.org/documentation/
tdb/index.html.

[198] The Linux Foundation. 2018. JanusGraph. Retrieved from http://janusgraph.org/.

[199] Yuanyuan Tian et al. 2020. IBM Db2 Graph: Supporting synergistic and retrofittable graph queries inside IBM Db2.
In ACM SIGMOD. 345-359. https://doi.org/10.1145/3318464.3386138

[200] TigerGraph. 2018. TigerGraph. Retrieved from https://www.tigergraph.com/.

[201] Alok Tripathy, Katherine Yelick, and Aydin Bulug. 2020. Reducing communication in graph neural network training.
In ACM/IEEE SC.

[202] Twitter. 2010. FlockDB. Retrieved from https://github.com/twitter-archive/flockdb.

[203] Aparna Vaikuntam and Vinodh Kumar Perumal. 2014. Evaluation of contemporary graph databases. In ACM COM-
PUTE. https://doi.org/10.1145/2675744.2675752

[204] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. 2016. PGQL: A property graph query
language. In ACM GRADES. https://doi.org/10.1145/2960414.2960421

[205] VelocityDB Inc. 2019. VelocityDB. Retrieved from https://velocitydb.com/.

[206] VelocityDB Inc. 2019. VelocityGraph. Retrieved from https://velocitydb.com/QuickStartVelocityGraph.

]
]

=

=

=

[207] WhiteDB Team. 2013. WhiteDB. Retrieved from http://whitedb.org/: https://github.com/priitj/whitedb.

Konstantinos Xirogiannopoulos, Virinchi Srinivas, and Amol Deshpande. 2017. GraphGen: Adaptive graph process-

ing using relational databases. In ACM GRADES. https://doi.org/10.1145/3078447.3078456

[209] Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng. 2016. Big graph analytics systems. In ACM
SIGMOD. 2241-2243. https://doi.org/10.1145/2882903.2912566

[210] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013. TripleBit: A fast and compact system
for large scale RDF data. Proc. VLDB Endow. 6, 7 (2013), 517-528. https://doi.org/10.14778/2536349.2536352

[211] Kangfei Zhao and Jeffrey Xu Yu. 2017. All-in-one: Graph processing in RDBMSs revisited. In ACM SIGMOD.
1165-1180.

[212] Xiaowei Zhu et al. 2020. LiveGraph: A transactional graph storage system with purely sequential adjacency list scans.
Proc. VLDB Endow. 13, 7 (2020), 1020-1034. https://doi.org/10.14778/3384345.3384351

[213] Lei Zou, M. Tamer Ozsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan Zhao. 2014. gStore: A graph-based
SPARQL query engine. VLDB J. 23, 4 (2014), 565-590. https://doi.org/10.1007/s00778-013-0337-7

Received 3 July 2022; revised 12 March 2023; accepted 31 May 2023

ACM Computing Surveys, Vol. 56, No. 2, Article 31. Publication date: September 2023.

https://doi.org/10.1145/3128571
https://db-engines.com/en/system/Neo4j%3BRedis
https://doi.org/10.1145/2612669.2612671
https://arxiv.org/abs/1512.00066
https://www.stardog.com/
https://doi.org/10.1145/3078447.3078451
https://doi.org/10.1145/2723372.2723732
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.14778/3574245.3574270
https://github.com/rubensworks/rdf-string-ttl.js
https://jena.apache.org/documentation/tdb/index.html
http://janusgraph.org/
https://doi.org/10.1145/3318464.3386138
https://www.tigergraph.com/
https://github.com/twitter-archive/flockdb
https://doi.org/10.1145/2675744.2675752
https://doi.org/10.1145/2960414.2960421
https://velocitydb.com/
https://velocitydb.com/QuickStartVelocityGraph
http://whitedb.org/
https://github.com/priitj/whitedb
https://doi.org/10.1145/3078447.3078456
https://doi.org/10.1145/2882903.2912566
https://doi.org/10.14778/2536349.2536352
https://doi.org/10.14778/3384345.3384351
https://doi.org/10.1007/s00778-013-0337-7

