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Parallel and Distributed Graph Neural Networks:
An In-Depth Concurrency Analysis

Maciej Besta and Torsten Hoefler

Abstract—Graph neural networks (GNNs) are among the most
powerful tools in deep learning. They routinely solve complex prob-
lems on unstructured networks, such as node classification, graph
classification, or link prediction, with high accuracy. However, both
inference and training of GNNs are complex, and they uniquely
combine the features of irregular graph processing with dense and
regular computations. This complexity makes it very challenging
to execute GNNs efficiently on modern massively parallel architec-
tures. To alleviate this, we first design a taxonomy of parallelism in
GNNs, considering data and model parallelism, and different forms
of pipelining. Then, we use this taxonomy to investigate the amount
of parallelism in numerous GNN models, GNN-driven machine
learning tasks, software frameworks, or hardware accelerators.
We use the work-depth model, and we also assess communica-
tion volume and synchronization. We specifically focus on the
sparsity/density of the associated tensors, in order to understand
how to effectively apply techniques such as vectorization. We also
formally analyze GNN pipelining, and we generalize the established
Message-Passing class of GNN models to cover arbitrary pipeline
depths, facilitating future optimizations. Finally, we investigate
different forms of asynchronicity, navigating the path for future
asynchronous parallel GNN pipelines. The outcomes of our analysis
are synthesized in a set of insights that help to maximize GNN per-
formance, and a comprehensive list of challenges and opportunities
for further research into efficient GNN computations. Our work
will help to advance the design of future GNNs.

Index Terms—Deep learning, parallel processing, parallel
algorithms.

I. INTRODUCTION

GRAPH neural networks (GNNs) are taking over the world
of machine learning (ML) by storm [1]. They have been

used in a plethora of complex problems such as node clas-
sification, graph classification, or edge prediction. Example
areas of application are social sciences, bioinformatics, chem-
istry, medicine, cybersecurity, linguistics, transportation, and
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others [1]. Some recent celebrated success stories are cost-
effective and fast placement of high-performance chips [2],
guiding mathematical discoveries [3], or significantly improving
the accuracy of protein folding prediction [4].

GNNs generalize both traditional deep learning (DL) and
graph processing. Contrarily to the former, they do not oper-
ate on regular grids and highly structured data (such as, e.g.,
image processing); instead, the data is highly unstructured,
irregular, and the resulting computations are data-driven and
lacking straightforward spatial or temporal locality [5]. More-
over, contrarily to the latter, vertices and/or edges are associated
with complex data and processing. For example, in many GNN
models, each vertex i has an assigned k-dimensional feature
vector, and each such vector is combined with the vectors of
i’s neighbors; this process is repeated iteratively. Thus, while
the overall style of such GNN computations resembles label
propagation algorithms such as PageRank [6], it comes with
additional complexity due to the high dimensionality of the
vertex features.

Yet, this is only how the simplest GNN models, such as basic
Graph Convolution Networks (GCN) [7], work. In many, if not
most, GNN models, high-dimensional data may also be attached
to every edge, and complex updates to the edge data take place
at every iteration. For example, in the Graph Attention Network
(GAT) model [8], to compute the scalar weight of a single
edge (i, j), one must first concatenate linear transformations
of the feature vectors of both vertices i and j, and then construct
a dot product of such a resulting vector with a trained parameter
vector. Other models come with even more complexity. For
example, in Gated Graph ConvNet (G-GCN) [9] model, the edge
weight may be a multidimensional vector.

At the same time, parallel and distributed processing have
essentially become synonyms for computational efficiency. Vir-
tually each modern computing architecture is parallel: cores
form a socket while sockets form a non-uniform memory access
(NUMA) compute node. Nodes may be further clustered into
blades, chassis, and racks. Numerous memory banks enable
data distribution. All these parts of the architectural hierarchy
run in parallel. Even a single sequential core offers parallelism
in the form of vectorization, pipelining, or instruction-level
parallelism (ILP). On top of that, such architectures are often
heterogeneous: Processing units can be CPUs or GPUs, Field
Programmable Gate Arrays (FPGAs), or others. How to harness
all these rich features to achieve more performance in GNN
workloads?
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To help answer this question, we systematically analyze dif-
ferent aspects of GNNs, focusing on the amount of parallelism
and distribution in these aspects. We use fundamental theoretical
parallel computing machinery, for example the Work-Depth
model [10], to reveal architecture independent insights. We put
special focus on the linear algebra formulation of computations
in GNNs, and we investigate the sparsity and density of the
associated tensors. This offers further insights into performance-
critical features of GNN computations, and facilitates applying
parallelization mechanisms such as vectorization. In general,
our investigation will help to develop more efficient GNN com-
putations.

For a systematic analysis, we propose an in-depth taxonomy
of parallelism in GNNs. The taxonomy identifies fundamental
forms of parallelism in GNNs. While some of them have direct
equivalents in traditional deep learning, we also illustrate others
that are specific to GNNs.

To ensure wide applicability of our analysis, we cover a large
number of different aspects of the GNN landscape. Among oth-
ers, we consider different categories of GNN models (e.g., spa-
tial, spectral, convolution, attentional, message passing), a large
selection of GNN models (e.g., GCN [7], SGC [11], GAT [8],
G-GCN [9]), parts of GNN computations (e.g., inference, train-
ing), building blocks of GNNs (e.g., layers, operators/kernels),
programming paradigms (e.g., SAGA-NN [12], GReTA [13]),
execution schemes behind GNNs (e.g., reduce, activate, different
tensor operations), GNN frameworks (e.g., NeuGraph [12]),
GNN accelerators (e.g., HyGCN [14]) GNN-driven ML tasks
(e.g., node classification, edge prediction), mini-batching ver-
sus full-batch training, different forms of sampling, and asyn-
chronous GNN pipelines.

We finalize our work with general insights into parallel and
distributed GNNs, and a set of research challenges and oppor-
tunities. Thus, our work can serve as a guide when developing
parallel and distributed solutions for GNNs executing on modern
architectures, and for choosing the next research direction in the
GNN landscape.

Overall, the central contributions of our work are:
� We identify and analyze fundamental forms of parallelism

in GNNs, and we illustrate that they – to some degree –
match those in traditional DL. This will foster designing
future GNN systems more effectively, by empowering
system designers with a clear view of the space of par-
allelization approaches that they could use, and how these
approaches can be combined. Moreover, it will facilitate
reusing existing large-scale DL frameworks.

� We analyze a broad spectrum of GNN models for-
mally (covering all major classes of models, i.e.,
Convolution, Attention, Message-Passing, and Lin-
ear/Polynomial/Rational ones), for a total of 23 models,
investigating how parallelizable they are, and identifying
their bottlenecks and the associated tradeoffs. This will
facilitate scaling these models to much larger sizes than
what is done today. It is an important factor in making
them more powerful, as indicated by the recent successes
of large NLPs.

TABLE I
MOST IMPORTANT SYMBOLS USED IN THE PAPER

Fig. 1. (Section II-A) Overview of general GNN computation. Input com-
prises the graph structure and the accompanying feature vectors (assigned to
vertices/edges). The input is processed using a specific GNN model (training or
inference). Output feature vectors are used in various downstream ML tasks.

� We design a broad theoretical framework for asynchronous
GNNs, which will serve as a blueprint for novel GNN
models and implementations that will further push the
scalability and performance of GNNs.

� We review challenges and opportunities, which will facil-
itate future research into large-scale GNNs.

II. GRAPH NEURAL NETWORKS: OVERVIEW

We first overview GNNs; Table I provides notation.

A. GNN Computation: A High-Level Summary

We overview a GNN computation in Fig. 1. The input is a
graph dataset, which can be a single graph (usually a large one,
e.g., a brain network), or several graphs (usually many small
ones, e.g., chemical molecules). The input usually comes with
input feature vectors that encode the semantics of a given task.
For example, if the input nodes and edges model – respectively –
papers and citations between these papers, then each node could
come with an input feature vertex being a one-hot bag-of-words
encoding, specifying the presence of words in the abstract of a
given publication. Then, a GNN model – underlying the training
and inference process – uses the graph structure and the input
feature vectors to generate the output feature vectors. In this pro-
cess, intermediate hidden latent vectors are often created. Note
that hidden features may be updated iteratively more than once
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Fig. 2. (Section II-A) Overview of one GNN layer. The input samples (e.g.,
vertices or graphs) are processed with a graph-related operation such as graph
convolution, followed by a neural network related operation such as an MLP,
then optionally by a non-linearity such as ReLU, and potentially by some
normalization.

Fig. 3. (Section II-A) Overview of GNN samples. GNN downstream ML tasks
aim at classification or regression of vertices, edges, or graphs. While both vertex
and edge samples virtually always have inter-sample dependencies, graphs may
be both dependent and independent.

(we refer to a single such iteration, that updates all the hidden
features, as a GNN layer). The output feature vectors are then
used for the downstream ML tasks such as node classification or
graph classification.

A single GNN layer is summarized in Fig. 2. In general, one
first applies a certain graph-related operation to the features. For
example, in the GCN model [7], one aggregates the features of
neighbors of each vertex v into the feature vector of v using
summation. Then, a selected operation related to traditional
neural networks is applied to the feature vectors. A common
choice is an MLP or a plain linear projection. Finally, one often
uses some form of non-linear activation (e.g., ReLU [7]) and/or
normalization.

One key difference between GNNs and traditional deep learn-
ing are possible dependencies between input data samples which
make the parallelization of GNNs much more challenging. We
show GNN data samples in Fig. 3. A single sample can be
a node (a vertex), an edge (a link), a subgraph, or a graph
itself. One may aim to classify samples (assign labels from a
discrete set) or conduct regression (assign continuous values
to samples). Both vertices and edges have inter-dependencies:
vertices are connected with edges while edges share common
vertices. The seminal work by Kipf and Welling [7] focuses on
node classification. Here, one is given a single graph as input,
data samples are single vertices, and the goal is to classify all
unlabeled vertices.

Graphs – when used as basic data samples – are usually
independent [15] (cf. Fig. 3, 3rd column). An example use case
is classifying chemical molecules. This setting resembles tra-
ditional deep learning (e.g., image recognition), where samples
(single pictures) also have no explicit dependencies. Note that,
as chemical molecules may differ in sizes, load balancing issues
may arise (we discuss it in Section III-B). This also has analogies
in traditional deep learning, e.g., sampled videos also may have
varying sizes [16]. Graph classification may also feature graph
samples with inter-dependencies (cf. Fig. 3, 4th column). This is
useful when studying, for example, relations between network
communities [17]; see Section III-B for details.

B. Input Datasets & Output Structures in GNNs

A GNN computation starts with the input graph G, modeled
as a tuple (V,E); V is a set of vertices and E ⊆ V × V is a
set of edges; |V | = n and |E| = m. N(v) denotes the set of
vertices adjacent to vertex (node) v, dv is v’s degree, and d is the
maximum degree in G (all symbols are listed in Table I). The
adjacency matrix (AM) of a graph is A ∈ {0, 1}n×n. A deter-
mines the connectivity of vertices: A(i, j) = 1 ⇔ (i, j) ∈ E.
The input, output, and hidden feature vector of a vertex i are
denoted with, respectively, xi,yi,hi. We have xi ∈ Rk and
yi,hi ∈ RO(k), where k is the number of input features. These
vectors can be grouped in matrices, denoted respectively as
X,Y,H ∈ Rn×O(k). If needed, we use the iteration index (l)

to denote the latent features in an iteration (GNN layer) l (h(l)
i ,

H(l)). Sometimes, for clarity of equations, we omit the index (l).

C. GNN Mathematical Models

A GNN model defines a mathematical transformation that
takes as input (1) the graph structure A and (2) the input
features X, and generates the output feature matrix Y. Unless
specified otherwise, X models vertex features. The exact way
of constructing Y based on A and X is an area of intense
research. Here, hundreds of different GNN models have been
developed [1], [18]. Importantly for parallel and distributed
execution, one can formulate most GNN models using either the
local formulation (LC) based on functions operating on single
edges or vertices, or the global formulation (GL), based on
operations on matrices grouping all vertex- and edge-related
vectors.

1) GNN Formulations: Local (LC) versus Global (GL): We
explicitly distinguish LC and GL formulations because they have
different potential for performance optimizations. GL formu-
lations can harness techniques from linear algebra and matrix
computations, such as communication avoidance [19], [20].
They also offer more potential for vectorization, as one operates
on whole feature and adjacency matrices and not on individual
feature vectors. LC formulations also have potential advantages.
For example, functions operating on single vertices/edges can
be programmed more effectively and scheduled more flexibly
on low-end compute resources such as serverless functions.
Moreover, the fine-grained perspective facilitates integration
with vertex-centric graph processing paradigms, benefiting from
established parallel frameworks such as Galois [21].
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TABLE II
(SECTION III-D) WORK-DEPTH ANALYSIS OF GNN TRAINING METHODS

TABLE III
IMPORTANT OBJECTS AND OPERATIONS FROM LINEAR ALGEBRA USED IN

GNNS

It is often highly non-trivial to provide both an LC and a
GL variant of a GNN model. While some models have both
formulations (e.g., GCN, GIN, Vanilla Attention, CommNet; cf.
Table V), for most models, this is not the case. Many models only
have known local formulations (e.g., MoNet, GAT, AGNN, G-
GCN, the “pooling” variant of GraphSAGE, EdgeConv “choice
5”; cf. Table V) or global ones (e.g., SGC, ChebNet, DCNN,

TABLE IV
WORK-DEPTH ANALYSIS OF GNN OPERATORS (KERNELS)

Fig. 4. (Section II-C) Categories of GNN models. We classify the GNN model
formulations into local and global. Red/green refer to formulation details in
Fig. 5.

GDC, LINE, PPNP; cf. Table VII). Very often, developing an LC
variant of a GL model is hard, e.g., for the PPNP model, it would
require finding the LC equivalent of inverting the adjacency
matrix. On the other hand, complex operations used to compute
a score for an edge in many LC formulations (e.g., in MoNet
or G-GCN) are challenging to express in GL formulations.
Hence, it is important to investigate both types of formulations
to ensure all these models can benefit from efficient parallel and
distributed execution.

Fig. 4 shows the taxonomy of GNN formulations. The LC
sub-categories were proposed by Bronstein et al. [22]; the GL
sub-categories are described by Chen et al. [23].

2) Local GNN Formulations: Details: In many GNN models,
the latent feature vector hi of a given node i is obtained by
applying a permutation invariant aggregator function

⊕
, such

as sum or max, over the feature vectors of the neighbors N(i)
of i (N(i) is defined as the 1-hop neighborhood) [22]. Moreover,
the feature vector of each neighbor of i may additionally be
transformed by a function ψ. Finally, the outcome of

⊕
may be

also transformed with another function φ. The sequence of these
three transformations forms one GNN layer. We denote such
a GNN model formulation (based on

⊕
, ψ, φ) as local (LC).

Formally, the equation specifying the feature vector h(l+1)
i of a

vertex i in the next GNN layer l + 1 is as follows:

h
(l+1)
i = φ

⎛
⎝h

(l)
i ,

⊕
j∈N(i)

ψ
(
h
(l)
i ,h

(l)
j

)⎞⎠ (1)

As an example, consider the seminal GCN model by Kipf
and Welling [7]. Here,

⊕
is a sum over N(i) ∪ {i} ≡ N̂(i), ψ

acts on each neighbor j’s feature vector by multiplying it with a
scalar 1/

√
didj , and φ is a linear projection with a trainable pa-

rameter matrixW followed byReLU . Thus, the LC formulation
is given by h

(l+1)
i = ReLU(W(l) × (

∑
j∈ ̂N(i)

1√
didj

h
(l)
j )).
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TABLE V
COMPARISON OF LOCAL (LC) FORMULATIONS OF GNN MODELS WITH RESPECT TO THE INNER FUNCTION ψ(hi,hj)

TABLE VI
COMPARISON OF LOCAL (LC) FORMULATION OF GNN MODELS WITH RESPECT TO THE OUTER FUNCTION φ
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TABLE VII
COMPARISON OF GLOBAL (GL) LINEAR ALGEBRA FORMULATIONS OF GNN MODELS

Note that each iteration may have different projection matri-
ces W(l).

Depending on the details of ψ, one can further distinguish
three GNN classes [22]: Convolutional GNNs (C-GNNs), At-
tentional GNNs (A-GNNs), and Message-Passing GNNs (MP-
GNNs). Example models from each class can be found in
Table V. In short, in these three classes of models,ψ respectively
applies – as a weight on the features – a fixed scalar coefficient
(C-GNNs), a learnable scalar coefficient (A-GNNs), or a learn-
able vector coefficient (MP-GNNs).

Importantly, these approaches form a hierarchy, i.e., C-GNNs
⊆ A-GNNs ⊆ MP-GNNs [22]. Specifically, A-GNNs can rep-
resent C-GNNs by implementing attention as a look-up table
a(xu, xv) = cuv . Then, both C-GNNs and A-GNNs are special
cases of MP-GNNs: ψ(xu, xv) = cuvψ(xv) (for GNNs) and
ψ(xu, xv) = a(xu, xv)ψ(xv) for A-GNNs.

Note that we follow the taxonomy established by Bronstein et
al. [22], [24], where MP-GNNs is a parent class of C-GNNs, A-
GNNs, but also more specialized message-passing model classes
such as MPNN by Gilmer et al. [25] or Graph Networks by
Battaglia et al. [26].

There are many ways in which one can parallelize GNNs in the
LC formulation. Here, the first-class citizens are “fine-grained”
functions being evaluated for vertices and edges. Thus, one
could execute these functions in parallel over different vertices,
edges, and graphs, parallelize a single function over the feature

dimension or over the graph structure, pipeline a sequence of
functions within a GNN layer or across GNN layers, or fuse
parallel execution of functions. We discuss all these aspects in
the following sections.

3) Global GNN Formulations: Details: Many GNN models
can also be formulated using operations on matrices X, H, A,
and others. We will refer to this approach as the global (GL)
linear algebraic approach.

For example, the GL formulation of the GCN model is
H(l+1) = ReLU(ÂH(l)W(l)). Â is the normalized adjacency
matrix with self loops Ã (cf. Table I): Â = D̃− 1

2 ÃD̃− 1
2 . This

normalization incorporates coefficients 1/
√
didj shown in the

LC formulation above (the original GCN paper gives more
details about normalization).

Many GL models use higher powers of A (or its normaliza-
tions). Based on this criterion, GL models can be linear (L) (if
only the 1st power ofA is used), polynomial (P) (if a polynomial
power is used), and rational (R) (if a rational power is used) [23].
This aspect impacts how to best parallelize a given model, as we
illustrate in Section IV. For example, the GCN model [7] is
linear.

GNN computations involve both sparse and dense ma-
trices, which enbtail different performance patterns [27].
Hence, this comes with potential for different paral-
lelization routines. We analyze this in more detail in
Section IV.
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D. GNN Inference versus GNN Training

A series of GNN layers stacked one after another, as detailed
in Fig. 2 and in Section II-C, constitutes GNN inference. GNN
training consists of three parts: forward pass, loss computation,
and backward pass. The forward pass has the same structure
as GNN inference. For example, in classification, the loss L is
obtained as follows: L = 1

|Y|
∑
i∈Y loss(yi, ti), where Y is a set

of all the labeled samples, yi is the final prediction for sample i,
and ti is the ground-truth label for sample i. In practice, one
often uses the cross-entropy loss [28]; other functions may also
be used [29].

Backpropagation outputs the gradients of all the trainable
weights in the model. A standard chain rule is used to obtain
mathematical formulations for respective GNN models. For
example, the gradients for the first GCN layer, assuming a total
of two layers (L = 2), are as follows [30]:

∇W(0)L =
(
ÂX

)T
(σ′

(
ÂXW(0)

)


 ÂT loss (Y −T)W(1)T )

where T is a matrix grouping all the ground-truth vertex labels,
cf. Table I for other symbols. This equation reflects the forward
propagation formula (cf. Section II-C3); the main difference
is using transposed matrices (because backward propagation
involves propagating information in the reverse direction on the
input graph edges) and the derivative of the non-linearity σ′.
The structure of backward propagation depends on whether full-
batch or mini-batch training is used. Parallelizing mini-batch
training is more challenging due to the inter-sample dependen-
cies, see Section III.

E. GNN Programming Models and Operators

Recent works that originated in the systems community
come with programming and execution models. These models
facilitate GNN computations. In general, they each provide a
set of programmable kernels, aka operators (also referred to as
UDFs – User Defined Functions) that enable implementing the
GNN functions both in the LC formulation (

⊕
, ψ, φ) and in

the GL formulation (matrix products and others). Fig. 5 shows
both LC and GL formulations, and how they translate to the
programming kernels.

The most widespread programming/execution model is
SAGA [12] (“Scatter-ApplyEdge-Gather-ApplyVertex”), used
in many GNN libraries [32]. In the Scatter operator, the feature
vectors of the vertices u, v adjacent to a given edge (u, v)
are processed (e.g., concatenated) to create the data spe-
cific to the edge (u, v). Then, in ApplyEdge, this data is
transformed (e.g., passed through an MLP). Scatter and Ap-
plyEdge together implement the ψ function. Then, Gather ag-
gregates the outputs of ApplyEdge for each vertex, using a
selected commutative and associative operation. This enables
implementing the

⊕
function. Finally, ApplyVertex conducts

some user specified operation on the aggregated vertex vectors
(implementing φ).

Note that, to express the edge related kernels Scatter and
UpdateEdge, the LC formulation provides a generic function ψ.

Fig. 5. (Sections II-C, II-D, and II-E) GNN model formulations (top part:
the local (LC) approach, bottom part: the global (GL) approach), and how
they translate into GNN operators (central part). SAGA [12], NAU [31], and
GReTA [13] are GNN programming models. Red/green indicate formulations
from Fig. 4.

On the other hand, to express these kernels in the GL formula-
tion, one adds an element-wise product between the adjacency
matrix A and some other matrix being a result of matrix opera-
tions that provide the desired effect. For example, to compute a
“vanilla attention” model on graph edges, one uses a product of
H(l) with itself transposed.

Other operators, proposed in GReTA [13], FlexGraph [31],
and others, are similar. For example, GReTA has one additional
operator, Activate, which enables a separate specification of
activation. On the other hand, GReTA does not provide a kernel
for applying the ψ function.

We illustrate the relationships between operators and GNN
functions from the LC and GL formulations, in Fig. 5. Here,
we use the name Aggregate instead of Gather to denote the
kernel implementing the

⊕
function. This is because “Gather”

has traditionally been used to denote bringing several objects
together into an array [33].1

Parallelism in these programming and execution models is
tightly related to that of the associated GNN functions in LC and
GL formulations; we discuss it in Section IV. We also analyze
parallel and distributed frameworks and accelerators based on
these models in Section V.

F. Taxonomy of Parallelism in GNNs

In traditional DL, there are two fundamental ways to paral-
lelize the processing of a neural network [34]: data parallelism

1Another name sometimes used in this context is “Reduce”

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 06:33:47 UTC from IEEE Xplore.  Restrictions apply. 



BESTA AND HOEFLER: PARALLEL AND DISTRIBUTED GRAPH NEURAL NETWORKS: AN IN-DEPTH CONCURRENCY ANALYSIS 2591

Fig. 6. (Section II-F) Parallelism taxonomy in GNNs.

and model parallelism where one partitions, respectively, data
samples and neural weights among different workers. Paral-
lelism in GNNs also has data parallelism (detailed in Section III)
and model parallelism (detailed in Section IV). Yet, there are
certain differences that we identify and analyze. We overview the
GNN parallelism taxonomy and the classes of GNN parallelism
in Figs. 6 and 7, respectively.

The first form of data parallelism in GNNs is independent
mini-batch parallelism. Here, parallel workers process a single
mini-batch; the samples in this mini-batch have no inter-sample
dependencies (i.e., the samples are independent graphs, see
Fig. 3). This form of parallelism is analogous to the one in
deep learning with images, where one parallelizes a mini-batch
of pictures. Second, GNNs also exhibit dependent mini-batch
parallelism. Here, a mini-batch is also processed in parallel by
multiple workers, but the samples do have inter-sample depen-
dencies (e.g., a mini-batch could be a set of vertices and edges,
sampled from a large input graph). These dependencies make
parallelization much more complex, as we detail in Section III.
Note that in GNNs, as in traditional DL, one can also use
full-batch training. Finally, one can combine both mini-batch
parallelism and full-batch processing with graph [partition]
parallelism. Here, one distributes a given mini-batch or a whole
batch across different workers, usually to fit it in memory.

Model parallelism in GNNs can be divided into operator
parallelism, artificial neural network (ANN) parallelism, and
pipeline parallelism. First, in operator parallelism, one paral-
lelizes the Scatter and Reduce kernels. Here, we further dis-
tinguish between [graph] local operator parallelism (paral-
lel processing of individual vertices and edges) and [graph]
global operator parallelism (parallel processing of collections
of vertices/edges). Examples of local operator parallelism are
feature parallelism (processing a feature vector of a given
vertex in parallel) and graph [neighborhood] parallelism (pro-
cessing in parallel the edges to the neighbors of a given ver-
tex). Second, in ANN parallelism, one parallelizes the Upda-
teEdge and UpdateVertex kernels. These kernels can harness
any form of parallelism that has been developed for tradi-
tional deep neural networks such as MLPs [34]. Examples
of ANN parallelism are ANN-pipeline parallelism (pipelining
MLP layers) and ANN-operator parallelism (parallel process-
ing of single NN operations). Finally, in [GNN] pipeline par-
allelism, one assigns different workers to different stages of
the GNN processing pipeline. Here, we distinguish macro-
pipeline parallelism (pipelining the whole GNN layers) and

micro-pipeline parallelism (pipelining the stages within a single
GNN layer).

G. Parallel and Distributed Models and Algorithms

We use formal models for reasoning about parallelism. For a
single-machine (shared-memory), we use the work-depth (WD)
analysis, an established approach for bounding run-times of
parallel algorithms. The work of an algorithm is the total number
of operations and the depth is defined as the longest sequential
chain of execution in the algorithm (assuming infinite number of
parallel threads executing the algorithm), and it forms the lower
bound on the algorithm execution time [10], [35]. One usually
wants to minimize depth while preventing work from increasing
too much.

In multi-machine (distributed-memory) settings, one is often
interested in understanding the algorithm cost in terms of the
amount of communication (i.e., communicated data volume),
synchronization (i.e., the number of global “supersteps”), and
computation (i.e., work), and minimizing these factors. A pop-
ular model used in this setting is Bulk Synchronous Parallel
(BSP) [36].

III. DATA PARALLELISM

In traditional deep learning, a basic form of data parallelism
is to parallelize the processing of input data samples within a
mini-batch. Each worker processes its own portion of samples,
computes partial updates of the model weights, and synchronizes
these updates with other workers using established strategies
such as parameter servers or allreduce [34]. As samples (e.g.,
pictures) are independent, it is easy to parallelize their process-
ing, and synchronization is only required when updating the
model parameters. In GNNs, mini-batch parallelism is more
complex because very often, there are dependencies between
data samples (cf. Fig. 3 and Section II-A. Moreover, the in-
put datasets as a whole are often massive. Thus, regardless of
whether and how mini-batching is used, one is often forced to
resort to graph partition parallelism because no single server
can fit the dataset. We now detail both forms of GNN data
parallelism. We illustrate them in Fig. 8.

A. Graph Partition Parallelism

Some graphs may have more than 250 billion vertices and
beyond 10 trillion edges [37], and each vertex and/or edge
may have a large associated feature vector [38]. Thus, one
inevitably must distribute such graphs over different workers
as they do not fit into one server memory. We refer to this form
of GNN parallelism as the graph partition parallelism, because
it is rooted in the established problem of graph partitioning [39],
[40] and the associated mincut problem [40], [41], [42]. The
main objective in graph partition parallelism is to distribute the
graph across workers in such a way that both communication
between the workers and work imbalance among workers are
minimized.

We illustrate variants of graph partitioning in Fig. 9. When
distributing a graph over different workers and servers, one can
specifically distribute vertices (edge [structure] partitioning,
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Fig. 7. (Section II-F) Overview of parallelism in GNNs. Different colors (red, green, blue) correspond to different workers.

Fig. 8. (Sections III-A and III-B) Graph partition parallelism versus dependent and independent mini-batch parallelism in GNNs. Different colors (red, green,
blue) indicate different graph partitions or mini-batches, and the associated different workers. Note that applying different colors to a vertex or to an independent
graph does not mean physical partitioning but it indicates that a given vertex or a given indepedent graph – as a whole – is used in more than a single mini-batch,
indicated by the respective color. Black vertices do not belong to any mini-batch.
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Fig. 9. (Section III-A) Different forms of graph partition parallelism. Different colors (red, green, blue) indicate different graph partitions, and the associated
different workers. The gray graph element is oblivious to a given form of partitioning. Note that different partitioning schemes can be combined together.

i.e., edges are partitioned), edges (vertex [structure] partition-
ing, i.e., vertices are partitioned), or edge and/or vertex input
features (edge/vertex [feature] partitioning, i.e., edge and/or
vertex input feature vectors are partitioned). Importantly, these
methods can be combined, e.g., nothing prevents using both
edge and feature vector partitioning together. Edge partitioning
is probably the most widespread form of graph partitioning,
but it comes with large communication and work imbalance
when partitioning graphs with skewed degree distributions.
Vertex partitioning alleviates it to a certain degree, but if a
high-degree vertex is distributed among many workers, it also
incurs overheads in maintaining a consistent distributed vertex
state. Differences between edge and vertex partitioning are
covered in rich literature [39], [40], [43], [44], [45]. Feature
vertex partitioning was not addressed in the graph processing
area because in traditional distributed graph algorithms, vertices
and/or edges are usually associated with scalar values.

Partitioning entails communication when a given part of a
graph depends on another part kept on a different server. This
may happen during a graph related operator (Scatter, Aggregate)
if edges or vertices are partitioned, and during a neural network
related operator (UpdateEdge, UpdateVertex) if feature vectors
are partitioned.

Partition parallelism usually does not allow a single vertex
to belong to multiple partitions (unlike mini-batch parallelism,
where a single sample may belong to more than one mini-batch).
However, there are strategies for reducing communication, in
which vertices are cached on remote partitions. Such schemes
would involve maintaining multiple copies of a given vertex on
several partitions.

Note that, while graph partition is usually conducted once,
before training starts, it could also be in principle reapplied
during training, to alleviate potential load imbalance (e.g., due to
inserting new vertices or edges). Such schemes are an interesting
direction for future work.

1) Full-Batch Training: Graph partition parallelism is com-
monly used to alleviate large memory requirements of full-batch
training. In full-batch training, one must store all the activations
for each feature in each vertex in each GNN layer). Thus, a
common approach for executing and parallelizing this scheme
is using distributed-memory large-scale clusters that can hold
the massive input datasets in their combined memories, together
with graph partition parallelism. Still, using such clusters may

be expensive, and it still does not alleviate the slow convergence.
Hence, mini-batching is often used.

B. Mini-Batch Parallelism

In GNNs, if data samples are independent graphs, then mini-
batch parallelism is similar to traditional deep learning. First, one
mini-batch is a set of such graph samples, with no dependencies
between them. Second, samples (e.g., molecules) may have
different sizes. This may cause load imbalance), similarly to,
e.g., videos [16]. For example, a single dataset (e.g., Chem-
Informatics) [46] may contain graphs both 5 vertices and 18
edges as well as with 121 vertices and 298 edges. This setting is
common in graph classification or graph regression. We illustrate
this in Fig. 8 (right), and we refer to it as independent mini-batch
parallelism. Note that – while graph samples may have different
sizes (e.g., molecules can have different counts of atoms and
bonds) – their feature counts are the same.

Still, in most GNN computations, mini-batch parallelism is
much more challenging because of inter-sample dependencies
(dependent mini-batch parallelism). As a concrete example,
consider node classification. Similarly to graph partition paral-
lelism, one may experience load imbalance issues, e.g., because
vertices may differ in their degrees. Several works alleviate
this [47], [48].

While the graph prediction setting has been explored in data
science works [1], [38], [49], it has been largely unaddressed
in system design studies [50]. As such, to the best of our
knowledge, there are no detailed existing load balancing studies
or schemes for independent mini-batch parallelism (unlike for
node or edge predictions [50]). Dependent mini-batch paral-
lelism with graphs as samples is even more scarcely researched;
for example, it does not even have a representing dataset in
the Large-Scale OGB challenge [38]. Hence, we list these as
research opportunities in Section VII.

Another key challenge in GNN mini-batching is the infor-
mation loss when selecting the target vertices forming a given
mini-batch. In traditional deep learning, one picks samples
randomly. In GNNs, straightforwardly applying such a strat-
egy would result in very low accuracy. This is because, when
selecting a random subset of nodes, this subset may not even
be connected, but most definitely it will be very sparse and
due to the missing edges, a lot of information about the graph
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Fig. 10. (Section III-B) Neighborhood explosion in mini-batching in GNNs. This phenomenon is characteristic to schemes based on node-wise sampling [51].

structure is lost during the Aggregate or Scatter operator. This
information loss challenge was circumvented in the early GNN
works with full-batch training [1], [7] (cf. Section III-A1).
Unfortunately, full-batch training comes with slow convergence
(because the model is updated only once per epoch, which may
require processing billions of vertices), and the above-mentioned
large memory requirements. Hence, two recent approaches that
address specifically mini-batching proposed sampling neighbor-
hoods, and appropriately selecting target vertices.

1) Neighborhood Sampling: In a line of works initiated by
GraphSAGE [52], one adds sampled neighbors of each selected
target vertex v to the mini-batch. Sampled neighbors of v usually
come from not only 1-hop, but also fromH-hop neighborhoods
of v, where H may be as large as graph’s diameter. The exact
selection of sampled neighbors depends on the details of each
scheme. In GraphSAGE, they are sampled (for each target
vertex) for each GNN layer before the actual training.

One challenge related to neighborhood sampling is the over-
head of their pre-selection. For example, in GraphSAGE, one
has to – in addition to the forward and backward propagation
passes – conduct as many sampling steps as there are layers in
a GNN, to conduct sampling for each layer and for each target
vertex. While this can be alleviated with parallelization schemes
also used for forward and backward propagation, it inherently
increases the depth of a GNN computation by a multiplicative
constant factor.

Another associated challenge is called the neighborhood ex-
plosion and is related to the memory overhead due to maintaining
potentially many such vertices. In the worst case, for each vertex
in a mini-batch, assuming keeping all its neighbors up to H
hops, one has to maintain O(kdH) state.2 Even if some of
these vertices are target vertices in that mini-batch and thus
are already maintained, when increasingH , their ratio becomes
lower. GraphSAGE alleviates this by sampling a constant frac-
tion of vertices from each neighborhood instead of keeping all
the neighbors, but the memory overhead may still be large [53].
We show an example neighborhood explosion in Fig. 10.

2The above bound is not tight because not all overlaps (e.g., between sampled
neighbors of different target vertices) are considered. However, we reflect the
approach taken by all the considered GNN schemes analyzed in Table II. To
enhance the bound, one needs additional assumptions, e.g., on the graph structure
or its generating model.

2) Appropriate Selection of Target Vertices: More recent
GNN mini-batching works focus on the appropriate selection
of target nodes included in mini-batches, such that support
vertices are not needed for high accuracy. For example, Cluster-
GCN first clusters a graph and then assigns clusters to mini-
batches [28], [54]. This way, one reduces the loss of information
because a mini-batch usually contains a tightly knit commu-
nity of vertices. However, one has to additionally compute
graph clustering as a form of preprocessing. This can be paral-
lelized with one of many established parallel clustering routines
[40].

C. Graph Partitions versus Mini-Batch/Full-Batch Training

Graph partitions are used primarily to contain the graph fully
in memory (avoiding expensive disk accesses), while mini-
batches are used to speed up convergence. The first fundamental
difference between these two is the key objective when splitting
the graph dataset across workers. For graph partition parallelism,
one aims to maximize compute efficiency, i.e., minimize run-
times by minimizing the amount of communication between
workers. For the former, one focuses on increasing sampling
efficiency, i.e., creating mini-batches in such a way that the
convergence speed is maximized. With certain schemes, these
objectives could result in selecting similar vertices. For example,
Cluster-GCN selects dense clusters as mini-batches and such
clusters could also be effective graph partitions [28]. However,
this is not always the case as other mini-batching schemes do
not necessarily focus on dense clusters [55]. Another difference
is that, while a single graph partition is processed by a single
worker (i.e., multiple workers process multiple partitions), one
mini-batch is processed by multiple workers. We also note that
one could consider the parallel processing of different mini-
batches. This would entail asynchronous GNN training, with
model updates being conducted asynchronously. Such a scheme
could slow down convergence, but would offer potential for more
parallelism.

Commonly, one uses graph partition parallelism with full-
batch training [30], [56], [57], [58]. However, in principle, graph
partition and mini-batch parallelism are orthogonal to each other,
and could thus be used together. For example, a large mini-batch
running on workers with not much memory could utilize graph
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partition parallelism to avoid I/O. Such an approach has also
been proposed in traditional DL [59], [60].

D. Work-Depth Analysis

We analyze work/depth of different GNN training schemes
that use full-batch or mini-batch training, see Table II.

First, all methods have a common term in work being
O(Lmk + Lnk2) that equals the number of layers L times
the number of operations conducted in each layer, which is
mk for sparse graph operations (Aggregate) and nk2 for dense
neural network operations (UpdateVertex). This is the total work
for full-batch methods. Mini-batch schemes have additional
work terms. Schemes based on support vertices (GraphSAGE,
VR-GCN, FastGCN) have terms that reflect how they pick
these vertices. GraphSAGE and VR-GCN have a particularly
high term O(cLnk2) due to the neighborhood explosion (c is
the number of vertices sampled per neighborhood). FastGCN
alleviates the neighborhood explosion by sampling c vertices
per whole layer, resulting inO(cLnk2) work. Then, approaches
that focus on appropriately selecting target vertices (Graph-
SAINT, Cluster-GCN) do not have the work terms related to
the neighborhood explosion. Instead, they have preprocessing
terms indicated with Wpre. Cluster-GCN’s Wpre depends on
the selected clustering method, which heavily depends on the
input graph size (n, m). GraphSAINT, on the other hand, does
stochastic mini-batch selection, the work of which does not
necessarily grow with n or m.

In terms of depth, all the full-batch schemes depend on the
number of layers L. Then, in each layer, two bottleneck opera-
tions are the dense neural network operation (UpdateVertex, e.g.,
a matrix-vector multiplication) and the sparse graph operation
(Aggregate). They take O(log k) and O(log d) depth, respec-
tively. Mini-batch schemes are similar, with the main difference
being the O(log c) instead of O(log d) term for the schemes
based on support vertices. This is because Aggregate in these
schemes is applied over c sampled neighbors. Moreover, in
Cluster-GCN and GraphSAINT, the neighborhoods may have
up to d vertices, yielding theO(log d) term. They however have
the additional preprocessing depth term Dpre that depends on
the used sampling or clustering scheme.

To summarize, full-batch and mini-batch GNN training
schemes have similar depth. Note that this is achieved using
graph partition parallelism in full-batch training methods, and
mini-batch parallelism in mini-batching schemes. Contrarily,
overall work in mini-batching may be larger due to the over-
heads from support vertices, or additional preprocessing when
selecting target vertices using elaborate approaches. However,
mini-batching comes with faster convergence and usually lower
memory pressure.

E. Tradeoff Between Parallelism & Convergence

The efficiency tradeoff between the amount of parallelism in
a mini-batch and the convergence speed, controlled with the
mini-batch size, is an important part of parallel traditional
ANNs [34]. In short, small mini-batches would accelerate con-
vergence but may limit parallelism while large mini-batches

Fig. 11. Generic equations for work and depth in GNN LC formulations.

may slow down convergence but would have more parallelism.
In GNNs, finding the “right” mini-batch size is much more
complex, because of the inter-sample dependencies. For ex-
ample, a large mini-batch consisting of vertices that are not
even connected, would result in very low accuracy. On the other
hand, if a mini-batch is small but it consists of tightly connected
vertices that form a cluster, then the accuracy of the updates
based on processing that mini-batch can be high [28].

IV. MODEL PARALLELISM

In traditional neural networks, models are often large. In
GNNs, models (W) are usually small and often fit into the
memory of a single machine. However, numerous forms of
model parallelism are heavily used to improve throughput; we
provided an overview in Section II-F and in Fig. 7.

In the following model analysis, we often picture the used
linear algebra objects and operations. For clarity, we indicate
their shapes, densities, and dimensions, using small figures,
see Table III for a list. Interestingly, GNN models in the LC
formulations heavily use dense matrices and vectors with dimen-
sionalities dominated byO(k), and the associated operations. On
the other hand, the GL formulations use both sparse and dense
matrices of different shapes (square, rectangular, vectors), and
the used matrix multiplications can be dense–dense (GEMM,
GEMV), dense–sparse (SpMM), and sparse–sparse (SpMSpM).
Other operations are elementwise matrix products or rational
sparse matrix powers. This rich diversity of operations imme-
diately illustrates a huge potential for parallel and distributed
techniques to be used with different classes of models.

A. Local Operator Parallelism

In local operator parallelism, one focuses on parallelizing exe-
cutions of Scatter and Gather on individual vertices or edges (i.e.,
local graph elements). We further structure our investigation by
considering separately local operator parallelism over LC and
GL GNN model formulations.

1) Parallelism in LC Formulations of GNN Models: We illus-
trate generic work and depth equations of LC GNN formulations
in Fig. 11. Overall, work is the sum of any preprocessing
costs Wpre, post-processing costs Wpost, and work of a single
GNN layer Wl times the number of layers L. In the considered
generic formulation in (1),Wl equals to work needed to evaluate
ψ for each edge (mWψ),

⊕
for each vertex (nW⊕), and φ for

each vertex (nWφ). Depth is analogous, with the main difference
that the depth of a single GNN layer is a plain sum of depths of
computing ψ,

⊕
, and φ (each function is evaluated in parallel

for each vertex and edge, hence no multiplication with n or m).
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We now analyze work and depth of many specific GNN mod-
els, by focusing on the three functions forming these models: ψ,⊕

, and φ. The analysis outcomes are in Tables V and VI. We
select the representative models based on a recent survey [23].
We also indicate whether a model belongs to the class of con-
volutional (C-GNN), attentional (A-GNN), or message-passing
(MP-GNN) models [24] (cf. Section II-C2).

Analysis of ψ We show the analysis results in Table V. We
provide the formulation of ψ for each model, and we also
illustrate all algebraic operations needed to obtainψ. All C-GNN
models have their ψ determined during preprocessing. This
preprocessing corresponds to the adjacency matrix row normal-
ization (cij = 1/di), the column normalization (cij = 1/dj), or
the symmetric normalization (cij = 1/

√
didj) [1]. In all these

cases, their derivation takes O(1) depth and O(m) work. Then,
A-GNNs and MP-GNNs have much more complex formulations
of ψ than C-GNNs. Details depend on the model, but - impor-
tantly - nearly all the models have O(k2) work and O(log k)
depth. The most computationally intense model, GAT, despite
having its work equal to O(dk2), has also logarithmic depth
of O(log k + log d). This means that computing ψ in all the
considered models can be effectively parallelized. As for the
sparsity pattern and type of operations involved in evaluating ψ,
most models use GEMV. All the considered A-GNN models
also use transposition of dense vectors. GAT also uses vector
concatenation and sum of up todvectors. Finally, one considered
MP-GNN model uses an elementwise MV product. In general,
each considered GNN model uses dense matrix and vector
operations to obtain ψ for each of the associated edges.

Note that, by default, ψ corresponds to edge feature vectors
that are “transient”, i.e., they are computed on the fly and are
not stored explicitly (unlike vertex feature vectors). However,
in some cases, one may also want to explicitly instantiate edge
feature vectors. Such instantiation would be used in, for example,
edge classification or edge regression tasks. An example GNN
formulation that enables this is Graph Networks by Battaglia
et al. [26], also an LC formulation. The insights about parallelism
in such a formulation are not different than the ones provided
in this section; the main different is the additional memory
overhead of O(mk) needed for storing all edge feature vectors.

Analysis of
⊕

The aggregate operator
⊕

j∈N(i) is almost
always commutative and associative (e.g., min, max, or plain
sum [64], [65]). While it operates on vectors xj of dimen-
sionality k, each dimension can be computed independently
of others. Thus, to compute

⊕
j∈N(i), one needs O(log di)

depth andO(kdi)work, using established parallel tree reduction
algorithms [66]. Hence,

⊕
is the bottleneck in depth in all the

considered models. This is because d (maximum vertex degree)
is usually much larger than k.

Analysis of φ The analysis of φ is shown in Table VI (for the
same models as in Table V). We show the total model work and
depth. All the models entail matrix-vector dense products and a
sum of up to d dense vectors. Depth is logarithmic. Work varies,
being the highest for GAT.

We also illustrate the operator parallelism in the LC formula-
tion, focusing on the GNN programming kernels, in the top part
of Fig. 12. We provide the corresponding generic work-depth

analysis in Table IV. The four programming kernels follow the
work and depth of the corresponding LC functions (ψ,⊕, φ).

Communication & Synchronization: Communication in the
LC formulations takes place in the Scatter kernel (a part of ψ)
if vertex feature vectors are communicated to form edge fea-
ture vectors; transferred data amounts to O(mk). Similarly,
during the Aggregate kernel (

⊕
), there can also be O(mk)

data moved. Both UpdateEdge (ψ) and UpdateVertex (φ) do
not explicitly move data. However, they may be associated
with communication intense operations; especially A-GNNs and
MP-GNNs often have complex processing associated withψ and
φ, cf. Tables V and VI. While this processing entails matrices
of dimensions of up to O(k)×O(k), which easily fit in the
memory of a single machine, this may change in the future, if
the feature dimensionality k is increased in future GNN models.

In the default synchronized variants of GNN, computing all
kernels of the same type must be followed by global synchro-
nization, to ensure that all data has been received by respective
workers (after Scatter and Aggregate) or that all feature vectors
have been updated (after UpdateEdge and UpdateVertex). In
Section IV-C3, we discuss how this requirement can be relaxed
by allowing asynchronous execution.

2) Parallelism in GL Formulations of GNN Models: Paral-
lelism in GL formulations is analyzed in Table VII. The mod-
els with both LC and FG formulations (e.g., GCN) have the
same work and depth. Thus, fundamentally, they offer the same
amount of parallelism. However, the GL formulations based on
matrix operations come with potential for different paralleliza-
tion approaches than the ones used for the LC formulations.
For example, there are more opportunities to use vectorization,
because one is not forced to vectorize the processing of feature
vectors for each vertex or edge separately (as in the LC formula-
tion), but instead one could vectorize the derivation of the whole
matrix H.

There are also models designed in the GL formulations with
no known LC formulations, cf. Tables V and VI. These are
models that use polynomial and rational powers of the adjacency
matrix, cf. Section II-C3 and Fig. 4. These models have only
one iteration. They also offer parallelism, as indicated by the
logarithmic depth (or square logarithmic for rational models
requiring inverting the adjacency matrix [86]). While they have
one iteration, making the L term vanish, they require deriving
a given power x of the adjacency matrix A (or its normalized
version). Importantly, as computing these powers is not inter-
leaved with non-linearities (as is the case with many models
that only use linear powers of A), the increase in work and
depth is only logarithmic, indicating more parallelism. Still,
their representative power may be lower, due to the lack of
non-linearities.

We overview two example GL models (GCN and vanilla graph
attention) in Fig. 12 (bottom). In this figure, we also indicate how
the LC GNN kernels are reflected in the flow of matrix operations
in the GL formulation.

Communication & Synchronization in the GL formulations
heavily depend on the used matrix representations and oper-
ations. Specifically, there have been a plethora of works into
communication reduction in matrix operations, for example
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Fig. 12. Operator parallelism in GNNs for LC formulations (top) and GL formulations (bottom).

targeting dense matrix multiplications [19], [87], [88], [89]
or sparse matrix multiplications [20], [90], [91], [92]. They
could be used with different GNN operations (cf. Table III) and
different models (cf. Table VII). The exact bounds would depend
on the selected schemes. Importantly, many works propose to
trade more storage for less communication by different forms of
input matrix replication [20]. This could be used in GNNs for
more performance.

3) Discussion: Feature versus Structure versus Model
Weight Parallelism: Feature parallelism is straightforward in
both LC and GL formulations (cf. Fig. 12). In the former, one can
execute binary tree reductions over different features in parallel
(feature parallelism in

⊕
), or update edge or vertex features in

parallel (feature parallelism in ψ and φ). In the latter, one can
multiply a row of an adjacency matrix with any column of the
latent matrix H (corresponding to different features) in parallel.
As feature vectors are dense, they can be stored contiguously in
memory and easily used with vectorization.

Graph neighborhood parallelism is available in both LC and
GL formulations. In the former, it is present via parallel exe-
cution of

⊕
(for a single specific feature). In the latter, one

parallelizes the multiplication of a given adjacency matrix row
with a given feature matrix column.

Traditional model weight parallelism, in which one partitions
the weight matrix W across workers, is also possible in GNNs.
Yet, due to the small sizes of weight matrices used so far in
the literature [38], [49], it was not yet the focus of research. If

this parallelism becomes useful in the feature, one could use
traditional deep learning techniques to parallelize the model
weight processing [34].

Graph [Neighborhood] versus Graph [Partition] Paral-
lelism: Graph [partition] parallelism is used to partition the graph
as a whole among workers in order to contain the graph fully
in memory. Graph [neighborhood] parallelism is used solely
among the neighbors of a single vertex during aggregation, and
it can be applied orthogonally to graph [partition] parallelism.
For example, a single graph partition may contain a high-degree
vertex, and the aggregation applied to this vertex can be paral-
lelized within this partition.

The relation between graph partition parallelism and graph
neighborhood parallelism is similar to that of macro-pipeline
and micro-pipeline parallelism. Specifically, while in macro-
pipeline parallelism, one partitions whole GNN layers among
the workers, parts of this single layer can be further parallelized
using micro-pipeline parallelism, orthogonally to the macro-
pipeline structure.

B. Global Operator Parallelism

In global operator parallelism, one executes Scatter & Gather
in parallel over collections of vertices or edges. This approach
could utilize additional structure on top of the processed graph
for more performance. For example, one could harness prim-
itives similar to graph contraction and supervertices (used in
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Fig. 13. (Section IV-C) Overview of pipelining combined with graph partition parallelism (top-left panel), and of (Section IV-C3) asynchronous pipelined
execution (other panels). Each of four example GNN executions processes three graph partitions (P1, P2, P3) on three stages: red (a sparse graph operation such
as convolution), green (a dense neural operation such as MLP), and blue) (a non-linearity such as ReLU). We use two GNN layers (shades indicate layers). The
whole execution is fully pipelined, i.e., there are 6 workers in total (three workers for each stage in each layer).

Karger’s algorithm for min-cuts [93]) or hooking trees (used
in Shiloach and Vishkin’s algorithm for connected compo-
nents [94]). Such supervertices or trees could potentially be used
to speed up Gather.

Global Operator versus Graph Partition Parallelism: Graph
partition parallelism is a straightforward approach that only
distributes vertices and edges across different workers so that
they can all fit into memory. Global operator parallelism, on the
contrary, is more complex and it can harness additional structure,
such as supervertices, on top of the processed collections of
vertices/edges.

C. Pipeline Parallelism

Pipelining has two general benefits. First, it increases the
throughput of a computation, lowering the overall processing
runtime. This is because more operations can finish in a time
unit. Second, it reduces memory pressure in the computation.
Specifically, one can divide the input dataset into chunks, and
process these chunks separately via pipeline stages, having to
keep a fraction of the input in memory at a time. In GNNs,
pipelining is often combined with graph partition parallelism,
with partitions being such chunks. We distinguish two main
forms of GNN pipelines: micro-pipelines and macro-pipelines,
see Fig. 7 and Section II-F.

1) Micro-Pipeline Parallelism: In micro-pipeline paral-
lelism, the pipeline stages correspond to the operations within a
GNN layer. Here, for simplicity, we consider a graph operation
followed by a neural operation, followed by a non-linearity,
cf. Fig. 2. One can equivalently consider kernels (Scatter, Upda-
teEdge, Aggregate, UpdateVertex) or the associated functions
(ψ,⊕, φ). Such pipelining enables reducing the length of the
sequence of executed operators by up to 3×, effectively form-
ing a 3-stage operator micro-pipeline. There have been several

practical works into micro-pipelining GNN operators, especially
using HW accelerators; we discuss them in Section V.

We show an example micro-pipeline (synchronous) in the
top panel of Fig. 13. Observe that each neural operation must
wait for all graph operations to finish, because – in the worst
case – in each partition, there may be vertices with edges to all
other partitions. This is an important difference to traditional
deep learning (and to a GNN setting with independent graphs,
cf. Fig. 3), where chunks have no inter-chunk dependencies, and
thus neural processing of P1 could start right after finishing the
graph operation on P1.

The exact benefits from micro-pipelining in depth depend
on a concrete GNN model. Assuming a simple GCN, the four
operations listed above take, respectively, O(log d), O(1), and
O(1) depth. Thus, as Aggregate takes asymptotically more time,
one could replicate the remaining stages, in order to make the
pipeline balanced.

2) Macro-Pipeline Parallelism: In macro-pipeline paral-
lelism, pipeline stages are GNN layers. Such pipelines are sub-
ject to intense research in traditional deep learning, with designs
such as GPipe [95], PipeDream [96], or Chimera [97]. However,
pipelining GNN layers is more difficult because of dependencies
between data samples, and it is only in its early development
stage [30]. In Fig. 13, the execution is fully pipelined, i.e., all
layers are processed by different workers.

3) Asynchronous Pipelining: In asynchronous pipelining,
pipeline stages proceed without waiting for the previous stages to
finish [96]. This notion can be applied to both micro- and macro-
pipelines in GNNs. First, in asynchronous micro-pipelines, a
worker processing its graph partition starts a neural operation
without waiting for graph operations to be finished on other
partitions (Fig. 13, top-right panel). Second, in asynchronous
macro-pipelines, the inter-layer synchronization is eliminated
and a worker can start a graph operation on its partition as soon
as it finishes a non-linearity in the previous GNN layer (Fig. 13,
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Fig. 14. (Section IV-C3) Message Passing GNN formulation that includes graph partition parallelism combined with fully synchronous (top) and potentially stale
asynchronous computation (bottom). The equation generalizes the Message Passing formulation [25] and past synchronous GCN models [56].

bottom-left panel). Finally, both forms can be combined, see
Fig. 13 (bottom-right).

Note that asynchronous pipelining can be used with both
graph partitions (i.e., asynchronous processing of different
graph partitions) and with mini-batches (i.e., asynchronous pro-
cessing of different mini-batches).

4) Theoretical Formulation of Arbitrarily Deep Pipelines:
To understand GNN pipelining better, we first provide a variant
of (1), namely (2), which defines a synchronous Message Passing
GNN execution with graph partition parallelism (Fig. 14). In this
equation, we explicitly illustrate that, when computing Aggre-
gation (⊕) of a given vertex i, some of the aggregated neighbors
may come from “remote” graph partitions, where i does not
belong; such i’s neighbors form a set NR(i). Other neighbors
come from the same “local” graph partition, forming a setNL(i).
Note that NR(i) ∪NL(i) = N(i). Moreover, in (2), we also
explicitly indicate the current training iteration t in addition to
the current layer l by using a double index (t, l). Overall, (2)
describes a synchronous standard execution because, to obtain
a feature vector in the layer l and in the training iteration t, all
used vectors come from the previous layer l − 1, in the same
training iteration t.

Different forms of staleness and asynchronicity can be intro-
duced by modifying the layer indexes so that they “point more to
the past”, i.e., use stale feature vectors from past layers. For this,
we generalize (2) into (3) by incorporating parameters to fully
control the scope of such staleness. These parameters are Lφ
(controlling the staleness of i’s own previous feature vector),
LL
ψ (controlling the staleness of feature vectors coming from

i’s local neighbors from i’s partition), and LR
ψ (controlling the

staleness of feature vectors coming from i’s remote neighbors
in other partitions). Moreover, to also allow for staleness and
asynchronicity with respect to training iterations, we introduce
the analogous parameters Tφ, TL

ψ , T
R
ψ . We then define the be-

havior of (3) such that these six parameters upper bound the
maximum allowed staleness, i.e., (3) can use feature vectors
from past layers/iterations at most as old as controlled by the
given respective index parameters.

Now, first observe that when setting Lφ = LL
ψ = LR

ψ = 1

and Tφ = TL
ψ = TR

ψ = 0, we obtain the standard synchronous
equation (cf. Fig. 13, top-left panel). Setting any of these pa-
rameters to be larger than this introduces staleness. For exam-
ple, PipeGCN [56] proposes to pipeline communication and
computation between training iterations in the GCN model [7]

Fig. 15. (Section IV-C3) Generalization of computing gradients in GNNs to
include graph partition parallelism combined with fully synchronous (top) and
potentially stale asynchronous computation (bottom).

by using TR
ψ = 1 (all other parameters are zero). This way,

the model is allowed to use stale feature vectors coming
from remote partitions in previous training iterations, enabling
communication-computation overlap (at the cost of somewhat
longer convergence). Another option would be to only set
LR
ψ = 2 (or to a higher value). This would enable asynchronous

macro-pipelining, because one does not have to wait for the most
recent GNN layer to finish processing other graph partitions to
start processing its own feature vector. We leave the exploration
of other asynchronous designs based on (3) for future work.

Finally, we also obtain the equivalent formulations for the
asynchronous computation of stale gradients, see Fig. 15. This
establishes a similar approach for optimizing backward propa-
gation passes.

5) Beyond Micro- and Macro-Pipelining: We note that the
above two forms of pipelining do not necessarily exhaust all
opportunities for pipelined execution in GNNs. For exam-
ple, there is extensive work on parallel pipelined reduction
trees [98] that could be used to further accelerate the Aggregate
operator (

⊕
).

D. Artificial Neural Network (ANN) Parallelism

In some GNN models such as GIN [67], the dense UpdateV-
ertex or UpdateEdge kernels are MLPs. They can be parallelized
with traditional DL approaches, which are not the focus of this
work; they have been extensively described elsewhere [34].
Overall, one can use ANN-operator parallelism (parallel pro-
cessing of single NN operators within one layer, e.g., computing
the value of a single neuron) and ANN-pipeline parallelism (par-
allel pipelined processing of consecutive MLP layers), cf. Fig. 7.
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We identify an interesting difference between GNN macro-
pipelines and the traditional ANN pipelines. Specifically, in the
latter, the data is only needed at the pipeline beginning. In the
former, the data (i.e., the graph structure) is needed at every GNN
layer.

E. Other Forms of Parallelism in GNNs

One could identify other forms of parallelism in GNNs. First,
by combining model and data parallelism, one obtains – as in
traditional deep learning – hybrid parallelism [99]. More elab-
orate forms of model parallelism are also possible. An example
is Mixture of Experts (MoE) [100], in which different models
could be evaluated in parallel. Currently, MoE usage in GNNs
is in its infancy [101], [102].

V. FRAMEWORKS, ACCELERATORS, TECHNIQUES

We finally analyze existing GNN SW frameworks and HW
accelerators.3 For this, we first describe parallel and distributed
architectures used by these systems.

A. Parallel and Distributed Computing Architectures

1) Single-Machine Architectures: Multi- or manycore paral-
lelism is usually included in general-purpose CPUs. Graphical
Processing Units (GPUs) offer massive amounts of parallelism
in a form of a large number of simple cores. However, they
often require the compute problems to be structured so that
they fit the “regular” GPU hardware and parallelism. Moreover,
Field Programmable Gate Arrays (FPGAs) are well suited for
problems that easily form pipelines. Finally, novel proposals
include processing-in-memory (PIM) [103] that brings compu-
tation closer to data.

GNNs feature both irregular operations that are “sparse” (i.e.,
entailing many random memory accesses), such as reductions
over neighborhoods, and regular “dense” operations, such as
transformations of feature vectors, that are usually dominated
by sequential memory access patterns [50]. The latter are often
suitable for effective GPU processing while the former are easier
to be processed effectively on the CPU. Thus, both architec-
tures are highly relevant in the context of GNNs. Our analysis
(Table VIII, the top part) indicates that they are both supported
by more than 50% of the available GNN processing frameworks.
We observe that most of these designs focus on executing regular
dense GNN operations on GPUs, leaving the irregular sparse
computations for the CPU. While being an effective approach,
we note that GPUs were successfully used to achieve very high
performance in irregular graph processing [104], and they thus
have high potential for also accelerating sparse GNN operations.

There is also interest in HW accelerators for GNNs (Ta-
ble VIII, the bottom part). Most are ASIC proposals (some
are evaluated using FPGAs); several of them incorporate PIM.
With today’s significance of heterogeneous computing, devel-
oping GNN-specific accelerators and using them in tandem with

3We encourage participation in this analysis. In case the reader possesses ad-
ditional relevant information, such as important details of systems not mentioned
in the current paper version, the authors would welcome the input.

mainstream architectures is an important thread of work that, as
we predict, will only gain more significance in the foreseeable
future.

2) Multi-Machine Parallelism: While shared-memory sys-
tems are sufficient for processing many datasets, a recent trend
in GNNs is to increase the size of input graphs [38], which
often requires multi-node settings to avoid expensive I/Os. We
observe (Table VIII, the top part) that different GNN software
frameworks support distributed-memory environments. How-
ever, the majority of them focus on training, leaving much room
for developing efficient distributed-memory frameworks and
techniques for GNN inference.

B. General Categories of Systems & Design Decisions

The first systems supporting GNNs usually belonged to one
of two categories. The first category are systems constructed
on top of graph processing frameworks and paradigms that
add neural network processing capabilities (e.g., Neugraph [12]
or Gunrock [148]). On the contrary, systems in the second
category (e.g., the initial PyG design [65]) start with deep
learning frameworks, and extend it towards graph processing
capabilities. These two categories usually focus on – respec-
tively – the LC and GL formulations and associated execution
paradigms.

The third, most recent, category of GNN systems, does not
start from either traditional graph processing or deep learn-
ing. Instead, they target GNN computations from scratch, fo-
cusing on GNN-specific workload characteristics and design
decisions [116], [149], [150], [151]. For example, Zhang et
al. [152] analyze the computational graph of GNNs, and propose
optimizations tailored specifically for GNNs.

C. Parallelism in GNN Systems

The most commonly supported form of parallelism is graph
partition parallelism. Here, one often reuses a plethora of es-
tablished techniques from the graph processing domain [39].
Unsurprisingly, most schemes used for graph partitioning are
based on assigning vertices to workers (“1D partitioning”).
This is easy to develop, but comes with challenges related
to load balancing. Better load balancing properties can often
be obtained when also partitioning each neighborhood among
workers (“2D partitioning”). While some frameworks support
this variant, there is potential for more development into this
direction. We also observe that most systems support sharding,
attacking a node or edge classification/regression scenario with
a single large input graph. Here, CAGNET [129] combines
sharding with replication, in order to accelerate GNN training
by communication avoidance [153].

The majority of works use graph partition parallelism on its
own, to alleviate large sizes of graph inputs (by distributing it
over different memory resources) and to accelerate GNN compu-
tations (by parallelizing the execution of one GNN layer). Some
systems ZIPPER [134] combine graph partition parallelism with
pipelining, offering further speedups and reductions in used
storage resources.
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TABLE VIII
COMPARISON OF GNN PROCESSING FRAMEWORKS AND ANALYSES OF GNN IMPLEMENTATIONS

Operator parallelism is supported by most systems. Both
feature parallelism and neighborhood parallelism have been
investigated, and there are systems supporting both (Feat-
Graph [131], GNNAdvisor [116], CAGNET [129]). Most of
these systems target these forms of parallelism explicitly (e.g.,
by programming binary reduction trees processing Reduce).
For example, Seastar [112] focuses on combining feature-level,
vertex-level, and edge-wise parallelism. On the other hand,
CAGNET is an example design that supports operator par-
allelism implicitly, by incorporating 2D and 3D distributed-
memory matrix products and the appropriate partitioning of
A and H matrices. We note that existing works often refer

to operator parallelism differently (e.g., intra-phase dataflow”
[154]).

Micro-pipeline parallelism is widely supported by HW ac-
celerators. We conjecture this is because it is easier to use a
micro-pipeline in the HW setting, where there already often exist
such pipeline dedicated HW resources.

Macro-pipeline parallelism is least often supported. This is
caused by its complexity: one must consider how to pipeline
the processing of interrelated nodes, edges, or graphs, across
GNN layers. While it is relatively straightforward to use pipeline
parallelism when processing graph samples in the context of
graph classification or regression, most systems focus on the
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more complex node/edge classification or regression. Here, two
examples are GRIP [144] and work by Zhang et al. [145], where
pipelining is enabled by simply loading the weights of the next
GNN layer, while the current layer is being processed.

D. Optimizations in GNN Systems

We also summarize parallelism related optimizations.
Frameworks that enable data parallelism use different forms

of graph partitioning. The primary goal is to minimize the edges
crossing graph partitions in order to reduce communication.
Here, some designs (e.g., DeepGalois [58], DistGNN [110]) use
vertex cuts. Others (e.g., DGCL [111], QGTC [128]) incorporate
METIS partitioning [40]. ROC [120] proposes an interesting
scheme, in which it uses online linear regression to effectively
repartition the graph across different training iterations, mini-
mizing the execution time.

There are numerous other schemes used for reducing
communication volume. For example, DeepGalois [58] and
DGCL [111] use message combination and aggregation, DGCL
also balances loads on different interconnect links, Dist-
GNN [110] delays updates to optimize communication, Min et
al. [133] use zero copy in the CPU–GPU setting (GPU threads
access host memory without requiring much CPU interaction)
and computation & communication overlap, and GNNAdvi-
sor [116] and 2PGraph [124] renumber nodes to achieve more
locality [155]. 2PGraph also increases the amount of locality
with cluster based mini-batching (it increases the number of
sampled vertices that belong to the same neighborhood in a
mini-batch), a scheme similar to the approach taken by the
Cluster-GCN model [28].

Moreover, there are many interesting operator related opti-
mizations. A common optimization is operator fusion (some-
times referred to as “kernel fusion” [126]), in which one merges
the execution of different operators, for example Aggregate
and UpdateVertex [64], [111], [112], [126]. This enables better
on-chip data reuse and reduces the number of invoked opera-
tors. While most systems fuse operators within a single GNN
layer, QGTC offers operator fusion also across different GNN
layers [128]. Other interesting schemes include operator reorga-
nization [152], in which one ensures that operators first perform
neural operations (e.g., MLP) and only then the updated feature
vectors are propagated. This limits redundant computation.

Some systems hybridize various aspects of GNN computing.
For example, Dorylus [30] executes graph-related sparse opera-
tors (e.g., Aggregate) on CPUs, while dense tensor related oper-
ators (e.g., UpdateVertex) run on Lambdas. fuseGNN [126] dy-
namically switches between incorporated execution paradigms:
dense operators such as UpdateVertex are executed with the
GL paradigm and the corresponding GEMM kernels, while
sparse computations such as Aggregate use the graph-related
paradigms such as SAGA.

VI. SELECTED INSIGHTS

We now summarize our insights into parallel and distributed
GNNs, pointing to parts with more details.

� Two biggest bottlenecks in LC GNNS are reduction
⊕

and the number of layers K in MLPs (in UpdateVer-
tex/UpdateEdge kernels) First, our formal analysis illus-
trates that the depth of a single GNN layer in all the con-
sidered LC models (except for GIN) is O(log d+ log k).
In today’s models, #features k is many orders of mag-
nitude smaller than the maximum degree d. Thus, the
reduction

⊕
– which is responsible for the log d term

– is the bottleneck in today’s LC GNNs, and it is im-
portant to optimize it (e.g., using pipelined reduction
trees [98]. Second, while most GNN models use lin-
ear projections to implement UpdateVertex/UpdateEdge,
some models (e.g., GIN) use MLPs with at least one
hidden layer K. The depth of such GNN models depends
linearly on K, and it then becomes another bottleneck
for a GNN layer. In such models, it is important to also
optimize the depth of MLP (e.g., using the ANN-pipeline
parallelism).

� Polynomial GL models are the most parallelizable Mod-
els such as LINE, DCNN, or GDC, come with lowest
overall depth of one training iteration, being O(log k +
log d log T ) (where T is the power of the adjacency matrix
used in a given model). Simultaneously, all the LC GNN
models have the depth of a single iteration being linear with
respect to L (#GNN layers). However, polynomial models
do not use non-linearities, making their predictive power
potentially lower than that of LC GNNs. This indicates that
when scalability is of top importance, it may be desirable to
consider a polynomial GL model. Moreover, our blueprint
for asynchronous LC GNNs may be the key to LC GNNs
that have both high predictive power and high parallelism,
as asynchronicity directly reduces the overheads due to L;
this is one of the research opportunities that we detail in
the next section.

� GAT has the highest amount of work, followed by other A-
GNNs and by MP-GNNs The established Graph Attention
Network model comes with the highest amount of work.
Simultaneously, it still is as parallelizable as other models
(i.e., its depth is equal to the depth of other models). Hence,
when one has enough parallel workers, the high amount of
work needed for GAT is alleviated. However, with limited
parallel resources, it may be better to consider other GNN
models that need less work.

� GNNs come with new forms of parallelism Graph partition
parallelism (Section III), closely related to the graph parti-
tioning problem in graph processing, is more challenging
than equivalent forms of parallelism in traditional deep
learning, due to the dependencies between data samples.
Another form, characteristic to GNNs, is graph neighbor-
hood parallelism (Section V-C).

� GNNs come with rich diversity of tensor operations Differ-
ent GNN models use a large variety of tensor operations.
While today’s works focus on the C-GNN style of com-
putations, that only uses two variants of matrix products,
there are numerous others, listed in Table III and assigned
to models in Tables V, VI, and VII.
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� Even local GNN formulations heavily use tensor op-
erations One could conclude that efficient tensor op-
erations are crucial only for the global GNN formu-
lations, as these formulations focus on expressing the
whole GNN model with matrices and operations on ma-
trices (cf. Table VII). However, many local GNN formu-
lations have complex tensor operations associated with
UpdateEdge or UpdateVertex operators, see Tables V
and VI.

� Both local and global GNN formulations are important
There are many GNN models formulated using the local
approach, that have no known global formulation, and vice
versa. Thus, effective parallel and distributed execution is
important in both formulations.

� Local and global GNN formulations welcome different
optimizations While having similar or the same work and
depth, LC and GL formulations have potential for dif-
ferent types of optimizations. For example, global GNN
models focus on operations on large matrices, which im-
mediately suggests optimizations related to – for exam-
ple – communication-avoiding linear algebra [19], [20],
[153]. On the other hand, local GNN models use oper-
ators as the “first class citizens”, suggesting that an ex-
ample important line of work would be operator paral-
lelism such as the one proposed by the Galois framework
[21].

VII. CHALLENGES & OPPORTUNITIES

Many of the considered parts of the parallel and distributed
GNN landscape were not thoroughly researched. Some were not
researched at all. We now list such challenges and opportunities
for future research.
� Efficient GNN inference Most GNN frameworks focus on

training, but fewer of them also target inference. There is a
large potential for developing high-performance schemes
targeting fast inference.

� Advanced mini-batching in GNNs There is very little work
on advanced mini-batch training and GNN layer pipelining.
Mini-batch training of GNNs is by nature complex, due to
the dependencies between node, edge, or graph samples.
While the traditional deep learning saw numerous inter-
esting works such as GPipe [95] or PipeDream [96], that
investigate asynchronous or bi-directional mini-batching,
such works are yet to be developed for GNNs. Here, our
blueprint for asynchronous GNNs can spearhead novel
works.

� More performance in GNNs via replication Many GNN
works have explored graph partitioning. However, very few
(e.g., CAGNET [129]) uses replication for more perfor-
mance (e.g., through 2.5D & -3D matrix multiplications).

� Parallelization of GNN models beyond simple C-GNNs
There is not much work on parallel and distributed GNN
models beyond the simple seminal ones from the C-GNN
or A-GNN classes, such as GCN [7] or GraphSAGE [52].
One would welcome works on more complex models from
the MP-GNN class, cf. Tables V and VI.

� Parallelization of GNN models beyond linear ones Virtu-
ally no research exists on parallel and distributed GNN
models of polynomial and rational types, cf. Table VII.

� Parallelization of other GNN settings Besides very few
attempts [117], there is no work on parallelizing hetero-
geneous GNNs [156], dynamic and temporal GNNs [1],
or hierarchical GNNs [17]. We predict that parallel and
distributed schemes targeting these works will come with
a large number of research opportunities, due to the rich
diversity of these GNN models and the associated graph
related problems.

� Achieving large scales A large challenge is to further push
the scale of GNN computations. When comparing the
scale and parameter counts of models such as CNNs or
Transformers with GNNs, it can be seen that there is a
large gap and a lot of research opportunities.

� Incorporating high-performance distributed-memory ca-
pabilities CAGNET [129] illustrated how to scalably
execute GNN training across many compute nodes. It
would be interesting to push this direction and use high-
performance distributed-memory developments and inter-
connects, and the associated mechanisms for more perfor-
mance of distributed-memory GNN computations, using –
for example – RDMA and RMA programming.

� System designs for graph predictions There are few studies
and systems focusing on graph-related predictions. For ex-
ample, developing load balancing schemes for mini-batch
parallelism where samples are graphs would be a promising
area of study.

VIII. CONCLUSION

Graph neural networks (GNNs) are one of the most important
and fastest growing parts of machine learning. Parallel and
distributed execution of GNNs is a key to GNNs achieving large
scales, high performance, and possibly accuracy. In this work,
we conduct an in-depth analysis of parallelism and distribution
in GNNs. We provide a taxonomy of parallelism, use it to analyze
a large number of GNN models, and synthesise the outcomes
in a set of insights as well as opportunities for future research.
Our work will propel the development of next-generation GNN
computations.
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