
Fail-in-Place Network Design
Interaction between Topology,
Routing Algorithm and Failures

Jens Domke♯, Torsten Hoefler♮, Satoshi Matsuoka♯

♯ Tokyo Institute of Technology
♮ ETH Zürich

Presentation Overview

November 18, 2014 Jens Domke 2

1.  Topologies,
Routing, Failures

3.  Simulation
Framework

2.  Resilience
Metrics

4.  Influence
of Failures

5.  Lessons Learned
& Conclusions

HPC Systems / Networks

November 18, 2014 Jens Domke 3

Massive networks
needed to connect
all compute nodes
of supercomputer!

1993: NWT (NAL)
140 Nodes
Crossbar Network

2004: BG/L (LLNL)
16,384 Nodes
3D-Torus Network

2011: K (RIKEN)
82,944 Nodes
6D Tofu Network

2013: Tianhe-2 (NUDT)
16,000 Nodes
Fat-Tree

Routing in HPC Network
•  Similarities to car traffic, …
•  Key requirements: low latency,

high throughput, low congestion,
fault-tolerant,
deadlock-free

•  Static (or adaptive)
•  Highly depended

on network topology
and technology

November 18, 2014 Jens Domke 4

SC’13

SC’14

Routing Algo. Categories
Topology-aware
J  Highest throughput
J  Fast calculation of

 routing tables
J  Deadlock-avoidance

 based on topology
 characteristics

L  Designed only for
 specific type of
 topology

L  Limited fault-tolerance

November 18, 2014 Jens Domke 5

Topology-agnostic
J  Can be applied to every

 connected network
J  Fully fault-tolerant
L  Throughput depends

 on algorithm/topology
L  Slow calculation of

 routing tables
L  Complex deadlock-

 avoidance (CDG/VLs or
 prohibited turns)

[Flich, 2011]

Failure Analysis
•  LANL Cluster 2 (97–05)

–  Unknown size/config.
•  Deimos (07–12)

–  728 nodes; 108 IB
switches; ≈1,600 links

•  TSUBAME2.0/2.5 (10–?)
–  1,555 nodes (1,408

compute nodes);
≈500 IB switches;
≈7,000 links

•  Software more reliable
•  High MTTR
•  ≈1% annual failure rate
•  Repair/maintenance is expensive!

November 18, 2014 Jens Domke 6

Fail-in-Place Strategies
•  Common in storage systems
•  Example: IBM’s Flipstone [Banikazemi, 2008]

(uses RAID arrays; software disables failed
HDD, migrates data)

•  Replace only critical failures, and disable
non-critical failed components

•  Usually applied when maintenance costs
exceed maintenance benefits

 Can we do the same in HPC networks?

November 18, 2014 Jens Domke 7

Presentation Overview

November 18, 2014 Jens Domke 8

1.  Topologies,
Routing, Failures

3.  Simulation
Framework

2.  Resilience
Metrics

4.  Influence
of Failures

5.  Lessons Learned
& Conclusions

Network Metrics
•  Extensively studied in literature, but ignores

routing
–  E.g., (bisection) bandwidth, latency, diameter, degree

 NP-complete for arbitrary/faulty networks

•  Topology resilience alone is not important
•  Network connectivity doesn’t ensure routing

connectivity (especially for topology-aware
algorithms)

 We need different metrics for
 fail-in-place networks!

November 18, 2014 Jens Domke 9

Disconnected Paths
•  Important for availability estimation and

timeout configuration for MPI, IB, …
•  Rerouting can take minutes [Domke, 2011]
•  For small error counts it can be extrapolated by

i.e., multiples of the
avg. edge forwarding
index πe

•  100 random fault è
injections for each
error count

November 18, 2014 Jens Domke 10

Intercept
Slope

Throughput Degradation
•  Fault-dependent degradation

measurement for fixed traffic patterns
•  Multiple random faulty networks

per failure percentage (seeded)
•  Linear regression to gather

intercept, slope, R2 coeff. of
determination

•  Good routing: high intercept,
slope close to 0, R2 close to 1

•  Possible conclusions
–  Compare quality of routing algorithms
–  Change routing if two lin. regressions intersect

November 18, 2014 Jens Domke 11

Presentation Overview

November 18, 2014 Jens Domke 12

1.  Topologies,
Routing, Failures

3.  Simulation
Framework

2.  Resilience
Metrics

4.  Influence
of Failures

5.  Lessons Learned
& Conclusions

IB Flit-level Simulation
•  OMNet++ 4.2.2

–  Discrete event simulation environment
–  Widely used in academia and open-source

•  IBmodel for OMNet++ [Gran, 2011]
–  InfiniBand model developed by Mellanox
–  4X QDR IB (32Gb/s peak); 7m copper cables (43ns

propagation delay); 36-port switches (cut-through
switching); max. 8 VLs; 2,048 byte MTU, flit = 64 byte

–  Transport: unreliable connection (UC) è no ACK msg
–  Tuned all simulation parameters with a real testbed

with 1 switch and 18 HCAs
November 18, 2014 Jens Domke 13

Traffic Injection
•  Uniform random injection

–  Infinite traffic generation (message size: 1 MTU)
–  Show the max. network throughput (measure at sinks)
–  Seeded Mersenne twister for randomness/repeatability

•  Exchange pattern of varying shift distances
–  Finite traffic (message size: 1 or 10 MTU)
–  Determine distances between all HCAs
–  Send first to closest neighbors (w/ shift s=±1)
–  In-/decrements the shift distance up to ±

November 18, 2014 Jens Domke 14

#HCA
2

Enhancements
•  Default OMNet++ behaviour

–  Runs for configured time or until termination by user
–  Flow control packets in IBmodel è no termination

•  Steady state simulation (for uniform random)
–  Stop simulation if sink bandwidth is within a 99%

confidence interval for at least 99% of the HCAs

November 18, 2014 Jens Domke 15

 … Network …

Steady State Controller

1st Sink/HCA
nth Sink/HCA

Report if steady state reached

Sinks monitor
avg. incoming

bandwidth

Enhancements
•  Send/receive controller (for exchange traffic)

–  Steady state controller not applicable
–  Generator/sink modules (of HCAs) report to global

send/receive controller
–  Controller stops simulation after last message arrived

November 18, 2014 Jens Domke 16

Network

Send/Receive Controller

Generator Sink

Report after last flit of
one message arrived

Report message
creation/destination
Report after last
message was created

Send message

Enhancements
•  Deadlock (DL) controller

–  Accurate DL detection too complex (runtime)
–  Low-overhead distributed DL-detection based on

hierarchical DL-detection protocol [Ho, 1982]
–  Local DL controller observes switch ports (states: idle,

sending, and blocked); reports to global DL controller;

November 18, 2014 Jens Domke 17

… Network …

Global DL Controller

1st Switch nth Switch

Monitor all ports
of one switch

Report state changes
of whole switch

1st Local DL Controller nth Local DL Controller

Stop sim. & report DL if
no switch is sending and
at least one is blocked

Simulation Toolchain
•  Generate faulty topology based on artificial/real

network (preserve physical connectivity)
•  Apply topology-[aware | agnostic] routing & check

logical connectivity
•  Convert to OMNet++ readable format
•  Execute [random | all-2-all] traffic simulation

November 18, 2014 Jens Domke 18

Presentation Overview

November 18, 2014 Jens Domke 19

1.  Topologies,
Routing, Failures

3.  Simulation
Framework

2.  Resilience
Metrics

4.  Influence
of Failures

5.  Lessons Learned
& Conclusions

Valid Combinations

November 18, 2014 Jens Domke 20

Use toolchain to
try all in OpenSM
implemented
routing algorithms
with all topologies
(small artificial
and real HPC)

DOR imple. in
OpenSM is not
really topology-
aware
 è deadlocks for
 some networks

Small Failure = Big Loss

November 18, 2014 Jens Domke 21

1% link failures (= two faulty links) results in
30% performance degradation for topology-
aware routing
algorithms

•  Whisker plots
of consumption
BW at sinks

•  VL usage results
in DFSSSP’s
fan out

(avg. values from 3 simulations
 with seeds=[1|2|3] per failure
 percentage)

Balanced vs Unbalanced

Unbalanced network
configuration (i.e.,
unequal #HCA/switch)
can have same effect

November 18, 2014 Jens Domke 22

1% link failures (= two
faulty links) can yield
up to 30% performance
degradation

Topo.-aware vs agnostic
For some topologies neither topology-aware nor
topology-agnostic routing algorithms perform
well.

Topology-agnostic
•  Low throughput
Topology-aware
•  Not resilient

enough

è Solution: changing
routing algorithm
depending on failure rate

(10 sim. with seeds=[1..10]
 per failure percentage)

November 18, 2014 Jens Domke 23

Failureì = Throughputì
Serious mismatch between static routing and
traffic pattern results in low throughput for the
fault-free case
[Hoefler, 2008]

Failures will
change the
deterministic
routing leading
to an improvement
for the same pattern

November 18, 2014 Jens Domke 24

?

Routing at Larger Scales
•  DFSSSP & LASH failed to route the 3D torus
•  Kautz graph either very resilient or bad routing

Working routing
•  3D torus

–  Torus-2QoS

•  Dragonfly
–  DFSSSP, LASH

•  Kautz graph
–  LASH

•  14-ary 3-tree
–  DFSSSP, LASH

Fat-Tree, Up*/Down*

(Only best routing shown)
November 18, 2014 Jens Domke 25

TSUBAME2.0 (TiTech)
Up*/Down* routing is
default on TSUBAME2.0

Changing to DFSSSP
routing on TSUBAME2.0
improves the throughput
by 2.1x for the fault- free
network and increases
TSUBAME’s fail-in-place
characteristics

November 18, 2014 Jens Domke 26

•  Simulation of 8 years of TSUBAME2.0’s
lifetime (≈1% annual link/switch failure)

•  Upgrade TSUBAME2.0 to 2.5 did not
change the network

•  No correlation between throughput
using Up*/Down* and failures

2.1x

3x

Deimos (TU Dresden)
Improvement of 3x with
DFSSSP over MinHop
(default; deadlocks)

No degradation even
with fail-in-place approach
è No maintenance cost

(except for replacing
 critical components)

November 19, 2014 Jens Domke 27

•  Sim. of 8 years of Deimos’ lifetime
(0.2% annual link & 1.5% switch failure)

•  Deimos’ network is very sparse

Presentation Overview

November 18, 2014 Jens Domke 28

1.  Topologies,
Routing, Failures

3.  Simulation
Framework

2.  Resilience
Metrics

4.  Influence
of Failures

5.  Lessons Learned
& Conclusions

Toolchain Use Cases
Routing/Library Development

–  Test new routings via plugin interface
–  Improve MPI collectives to match oblivious routing

HPC Design
–  Test topology/routing combinations
–  Extrapolate throughput degradation over time based

on estimated failure rates and derive operation policies
HPC System Management

–  Simulate current throughput w/o influencing the real
system and decide if maintenance/action is needed

November 19, 2014 Jens Domke 29

•  Topology-aware routing algorithms
–  Few failures can have big influence on throughput
–  Resilience/deadlock issues for large #failures
–  Problems with unbalanced networks (e.g., thru adding

management nodes, damaged HCAs, …)
•  Topology-agnostic routing algorithms

–  Usually higher runtime è recovery takes longer
–  Potentially lower throughput for some regular topologies
–  Scaling issues if deadlock-freedom is required (i.e.,

known DL-free routings, based on VLs, exceed available
number of virtual lanes for large scale networks)
November 19, 2014 Jens Domke 30

Issues of curr. Routings

Concussion / Summery
What we can’t give you
•  Name the best topology or the best routing

algorithm
•  Definitive answer which topology or routing

is best for your needs
•  General estimation on cost savings:

–  Depends on many variables: such as network size,
failure rate, hardware costs, maintenance costs, …

November 18, 2014 Jens Domke 31

Concussion / Summery
However, we showed and can provide
•  Simulation framework helps to easily identify

efficient topology/routing combination
•  Toolchain (see http://spcl.inf.ethz.ch/Research/Scalable_Networking/FIP)

–  Test system designs, topologies, routing algorithms
–  Evaluate throughput degradation of running system

•  Investigated routing algorithms (even fault-
tolerant & topology-agnostic) show limitations

 BUT: Fail-in-place networks are possible! J
 November 18, 2014 Jens Domke 32

Acknowledgements
•  Eitan Zahavi (Mellanox)

–  Developed the initial IBmodel for OMNeT++

•  Researchers at Simula Research Laboratory
–  Ported the IB module to newest OMNeT++ version

•  HPC system administrators at Los Alamos
National Lab, Technische Universität
Dresden and Tokyo Institute of Technology
–  Collected highly detailed failure data

November 18, 2014 Jens Domke 33

References
[Banikazemi, 2008]: M. Banikazemi, J. Hafner, W. Belluomini, K. Rao, D.
 Poff, and B. Abali, “Flipstone: Managing Storage with Fail-in-place and
 Deferred Maintenance Service Models,” SIGOPS Oper. Syst. Rev., vol.
 42, no. 1, pp. 54–62, Jan. 2008.
[Domke, 2011]: J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-Free
 Oblivious Routing for Arbitrary Topologies,” in Proceedings of the 25th
 IEEE International Parallel & Distributed Processing Symposium.
 Washington, DC, USA: IEEE Computer Society, May 2011, pp. 613–624.
[Flich, 2011]: J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J.
 Duato, M. Koibuchi, T. Rokicki, and J. C. Sancho, “A Survey and
 Evaluation of Topology-Agnostic Deterministic Routing Algorithms,”
 IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 3, pp. 405–425, Mar. 2012.

November 18, 2014 Jens Domke 34

References
[Gran, 2011]: E. G. Gran and S.-A. Reinemo, “InfiniBand congestion
 control: modelling and validation,” in Proceedings of the 4th
 International ICST Conference on Simulation Tools and Techniques, ser.
 SIMUTools ’11. ICST, Brussels, Belgium, Belgium: ICST (Institute for
 Computer Sciences, Social-Informatics and Telecommunications
 Engineering), 2011, pp. 390–397.
[Ho, 1982]: G. Ho and C. Ramamoorthy, “Protocols for Deadlock
 Detection in Distributed Database Systems,” IEEE Transactions on
 Software Engineering, vol. SE-8, no. 6, pp. 554–557, 1982.
[Hoefler, 2008]: T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage
 Switches are not Crossbars: Effects of Static Routing in High-
 Performance Networks,” in Proceedings of the 2008 IEEE International
 Conference on Cluster Computing. IEEE Computer Society, Oct. 2008.

November 18, 2014 Jens Domke 35

