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HPC Systems / Networks 
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Massive networks 
needed to connect 
all compute nodes 
of supercomputer! 

1993: NWT (NAL) 
140 Nodes 
Crossbar Network 

2004: BG/L (LLNL) 
16,384 Nodes 
3D-Torus Network 

2011: K (RIKEN) 
82,944 Nodes 
6D Tofu Network 

2013: Tianhe-2 (NUDT) 
16,000 Nodes 
Fat-Tree 
 



Routing in HPC Network 
•  Similarities to car traffic, … 
•  Key requirements: low latency, 

high throughput, low congestion, 
fault-tolerant, 
deadlock-free 

•  Static (or adaptive) 
•  Highly depended 

on network topology 
and technology 

 
November 18, 2014 Jens Domke 4 

SC’13 

SC’14 



Routing Algo. Categories 
Topology-aware 
J   Highest throughput 
J   Fast calculation of  

 routing tables 
J   Deadlock-avoidance  

 based on topology  
 characteristics 

L   Designed only for  
 specific type of  
 topology 

L   Limited fault-tolerance 
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Topology-agnostic 
J   Can be applied to every   

 connected network 
J   Fully fault-tolerant 
L   Throughput depends  

 on algorithm/topology 
L   Slow calculation of  

 routing tables 
L   Complex deadlock- 

 avoidance (CDG/VLs or  
 prohibited turns) 

[Flich, 2011] 



Failure Analysis 
•  LANL Cluster 2 (97–05) 

–  Unknown size/config. 
•  Deimos (07–12) 

–  728 nodes; 108 IB 
switches; ≈1,600 links 

•  TSUBAME2.0/2.5 (10–?) 
–  1,555 nodes (1,408 

compute nodes); 
≈500 IB switches; 
≈7,000 links 

•  Software more reliable 
•  High MTTR 
•  ≈1% annual failure rate 
•  Repair/maintenance is expensive! 
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Fail-in-Place Strategies 
•  Common in storage systems 
•  Example: IBM’s Flipstone  [Banikazemi, 2008]

(uses RAID arrays; software disables failed 
HDD, migrates data) 

•  Replace only critical failures, and disable 
non-critical failed components 

•  Usually applied when maintenance costs 
exceed maintenance benefits 

 
 Can we do the same in HPC networks? 
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Network Metrics 
•  Extensively studied in literature, but ignores 

routing 
–  E.g., (bisection) bandwidth, latency, diameter, degree 

     NP-complete for arbitrary/faulty networks 

•  Topology resilience alone is not important 
•  Network connectivity doesn’t ensure routing 

connectivity (especially for topology-aware 
algorithms) 

 

  We need different metrics for 
         fail-in-place networks! 
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Disconnected Paths 
•  Important for availability estimation and 

timeout configuration for MPI, IB, … 
•  Rerouting can take minutes  [Domke, 2011] 
•  For small error counts it can be extrapolated by 

 
 
i.e., multiples of the 
avg. edge forwarding 
index πe 

•  100 random fault     è 
injections for each  
error count 
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Intercept 
Slope 

Throughput Degradation 
•  Fault-dependent degradation 

measurement for fixed traffic patterns 
•  Multiple random faulty networks 

per failure percentage (seeded) 
•  Linear regression to gather 

intercept, slope, R2 coeff. of 
determination 

•  Good routing: high intercept, 
slope close to 0, R2 close to 1 

•  Possible conclusions 
–  Compare quality of routing algorithms 
–  Change routing if two lin. regressions intersect 
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IB Flit-level Simulation 
•  OMNet++ 4.2.2 

–  Discrete event simulation environment 
–  Widely used in academia and open-source 

•  IBmodel for OMNet++  [Gran, 2011] 
–  InfiniBand model developed by Mellanox 
–  4X QDR IB (32Gb/s peak); 7m copper cables (43ns 

propagation delay); 36-port switches (cut-through 
switching); max. 8 VLs; 2,048 byte MTU, flit = 64 byte 

–  Transport: unreliable connection (UC) è no ACK msg 
–  Tuned all simulation parameters with a real testbed 

with 1 switch and 18 HCAs 
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Traffic Injection 
•  Uniform random injection 

–  Infinite traffic generation (message size: 1 MTU) 
–  Show the max. network throughput (measure at sinks) 
–  Seeded Mersenne twister for randomness/repeatability 

•  Exchange pattern of varying shift distances 
–  Finite traffic (message size: 1 or 10 MTU) 
–  Determine distances between all HCAs 
–  Send first to closest neighbors (w/ shift s=±1) 
–  In-/decrements the shift distance up to ± 
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Enhancements 
•  Default OMNet++ behaviour 

–  Runs for configured time or until termination by user 
–  Flow control packets in IBmodel è no termination 

•  Steady state simulation (for uniform random) 
–  Stop simulation if sink bandwidth is within a 99% 

confidence interval for at least 99% of the HCAs 
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 …  Network  … 

Steady State Controller 

1st Sink/HCA 
nth Sink/HCA 

Report if steady state reached 

Sinks monitor 
avg. incoming 

bandwidth 



Enhancements 
•  Send/receive controller (for exchange traffic) 

–  Steady state controller not applicable 
–  Generator/sink modules (of HCAs) report to global 

send/receive controller 
–  Controller stops simulation after last message arrived 
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Network 

Send/Receive Controller 

Generator Sink 

Report after last flit of 
one message arrived 

Report message 
creation/destination 
Report after last 
message was created 

Send message 



Enhancements 
•  Deadlock (DL) controller 

–  Accurate DL detection too complex (runtime) 
–  Low-overhead distributed DL-detection based on 

hierarchical DL-detection protocol [Ho, 1982] 
–  Local DL controller observes switch ports (states: idle, 

sending, and blocked); reports to global DL controller;  
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…  Network  … 

Global DL Controller 

1st Switch nth Switch 

Monitor all ports 
of one switch 

Report state changes 
of whole switch 

1st Local DL Controller nth Local DL Controller 

Stop sim. & report DL if 
no switch is sending and 
at least one is blocked 



Simulation Toolchain 
•  Generate faulty topology based on artificial/real 

network (preserve physical connectivity) 
•  Apply topology-[aware | agnostic] routing & check 

logical connectivity 
•  Convert to OMNet++ readable format 
•  Execute [random | all-2-all] traffic simulation 
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Valid Combinations 
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Use toolchain to 
try all in OpenSM 
implemented 
routing algorithms 
with all topologies 
(small artificial 
and real HPC) 
 

DOR imple. in 
OpenSM is not 
really topology- 
aware 
  è deadlocks for 
       some networks 



Small Failure = Big Loss 
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1% link failures (= two faulty links) results in 
30% performance degradation for topology-
aware routing 
algorithms 
 

•  Whisker plots 
of consumption 
BW at sinks 

•  VL usage results 
in DFSSSP’s 
fan out 
 

( avg. values from 3 simulations 
  with seeds=[1|2|3] per failure 
  percentage ) 



Balanced vs Unbalanced 

Unbalanced network 
configuration (i.e., 
unequal #HCA/switch) 
can have same effect 
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1% link failures (= two 
faulty links) can yield 
up to 30% performance 
degradation 



Topo.-aware vs agnostic 
For some topologies neither topology-aware nor 
topology-agnostic routing algorithms perform 
well. 
 

Topology-agnostic 
•  Low throughput 
Topology-aware 
•  Not resilient 

enough 

è Solution: changing 
routing algorithm 
depending on failure rate 

 

( 10 sim. with seeds=[1..10] 
  per failure percentage ) 
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Failureì = Throughputì 
Serious mismatch between static routing and 
traffic pattern results in low throughput for the 
fault-free case 
[Hoefler, 2008] 
 

Failures will 
change the 
deterministic 
routing leading 
to an improvement 
for the same pattern 
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Routing at Larger Scales 
•  DFSSSP & LASH failed to route the 3D torus 
•  Kautz graph either very resilient or bad routing 
 

Working routing 
•  3D torus 

–  Torus-2QoS 

•  Dragonfly 
–  DFSSSP, LASH 

•  Kautz graph 
–  LASH 

•  14-ary 3-tree 
–  DFSSSP, LASH 

Fat-Tree, Up*/Down* 
 

(Only best routing shown) 
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TSUBAME2.0 (TiTech) 
Up*/Down* routing is 
default on TSUBAME2.0 
 

Changing to DFSSSP 
routing on TSUBAME2.0 
improves the throughput 
by 2.1x for the fault- free 
network and increases 
TSUBAME’s fail-in-place 
characteristics 
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•  Simulation of 8 years of TSUBAME2.0’s 
lifetime (≈1% annual link/switch failure) 

•  Upgrade TSUBAME2.0 to 2.5 did not 
change the network 

•  No correlation between throughput 
using Up*/Down* and failures 

2.1x 



3x 

Deimos (TU Dresden) 
Improvement of 3x with 
DFSSSP over MinHop 
(default; deadlocks) 
 

No degradation even 
with fail-in-place approach 
è No maintenance cost 

(except for replacing 
 critical components) 
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•  Sim. of 8 years of Deimos’ lifetime 
(0.2% annual link & 1.5% switch failure) 

•  Deimos’ network is very sparse 
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Toolchain Use Cases 
Routing/Library Development 

–  Test new routings via plugin interface 
–  Improve MPI collectives to match oblivious routing 

HPC Design 
–  Test topology/routing combinations 
–  Extrapolate throughput degradation over time based 

on estimated failure rates and derive operation policies 
HPC System Management 

–  Simulate current throughput w/o influencing the real 
system and decide if maintenance/action is needed 
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•  Topology-aware routing algorithms 
–  Few failures can have big influence on throughput 
–  Resilience/deadlock issues for large #failures 
–  Problems with unbalanced networks (e.g., thru adding 

management nodes, damaged HCAs, …) 
•  Topology-agnostic routing algorithms 

–  Usually higher runtime è recovery takes longer 
–  Potentially lower throughput for some regular topologies 
–  Scaling issues if deadlock-freedom is required (i.e., 

known DL-free routings, based on VLs, exceed available 
number of virtual lanes for large scale networks) 
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Issues of curr. Routings 



Concussion / Summery 
What we can’t give you 
•  Name the best topology or the best routing 

algorithm 
•  Definitive answer which topology or routing 

is best for your needs 
•  General estimation on cost savings: 

–  Depends on many variables: such as network size, 
failure rate, hardware costs, maintenance costs, … 
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Concussion / Summery 
However, we showed and can provide 
•  Simulation framework helps to easily identify 

efficient topology/routing combination 
•  Toolchain (see http://spcl.inf.ethz.ch/Research/Scalable_Networking/FIP) 

–  Test system designs, topologies, routing algorithms 
–  Evaluate throughput degradation of running system 

•  Investigated routing algorithms (even fault-
tolerant & topology-agnostic) show limitations 

 

             BUT: Fail-in-place networks are possible! J 
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