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Deep Neural Networks (DINNs) are becoming an important tool in modern computing applications. Accelerating
their training is a major challenge and techniques range from distributed algorithms to low-level circuit
design. In this survey, we describe the problem from a theoretical perspective, followed by approaches
for its parallelization. Specifically, we present trends in DNN architectures and the resulting implications
on parallelization strategies. We discuss the different types of concurrency in DNNs; synchronous and
asynchronous stochastic pradient descent; distributed system architectures; communication schemes; and
performance modeling. Based on these approaches, we extrapolate potential directions for parallelism in deep
learning.
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1 INTRODUCTION

Machine Learning, and in particular Deep Learning |LeCun et al. 2015], is a field that is rapidly
taking over a variety of aspects in our daily lives. In the core of deep learning lies the Deep Neural
Network (DNN), a construct inspired by the interconnected nature of the human brain. Trained
properly, the expressiveness of DNNs provides accurate solutions for problems previously thought
to be unsolvable, simply by observing large amounts of data. Deep learning has been successfully
implemented for a plethora of subjects, ranging from image classification [Huang et al. 2017],
through speech recognition [Amodei et al. 2016] and medical diagnosis [Ciresan et al. 2013], to
autonomous driving [Bojarski et al. 2016] and defeating human players in complex games [Silver
et al. 2017] (see Fig. 1 for more examples).
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Deep Learning is Supercomputing!
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f ImageNet (1k): 180 GB f 100-200 layers deep [ 10-22k labels
f ImageNet (22k): A few TB f ~100M2B parameters f growing (e.g., face recognition)
f Industry: Much larger f 0.1-8 GiBparameter storage f weeks to train



