Application Optimization with non-blocking
Collective Operations
— A case study with a three-dimensional FFT —

Torsten Hofler

Department of Computer Science
Indiana University / Technical University of Chemnitz

Commissariat & 'Energie Atomique
Direction des applications militaires (CEA-DAM)
Bruyéres-le-chatel, France
12th January 2007

Outline

0 Non-blocking Collective Operations
@ General Thoughts
@ Overlap
@ Process Skew

9 General Application Optimization
@ Introduction
@ An independent data Algorithm
@ Anindependent data Loop

e Use case: A specialized 3D-FFT
@ A parallel 3D-FFT
@ Applying non-blocking Collectives

@ Conclusions and Future Work

Non-blocking Collective Operations

Outline

0 Non-blocking Collective Operations

Non-blocking Collective Operations
[le]

General Thoughts

What is it?

Non-blocking Send/Recv

@ MPI_Isend/MPI_lIrecv + MPI_Test/MPI_Wait
@ avoid deadlock situations and enable overlap

Collective Operations

@ MPI_Bcast/MPI_Reduce/...
@ often-used comm. patterns and performance portability
o — cf. BLAS for communication

\

Non-blocking Collective Operations

@ MPI _Ibcast/MPI_Ireduce/... + MPI_Test/MPI_Wait
@ combines all advantages

@ overlap + performance portability

Non-blocking Collective Operations
oe

General Thoughts

What is it?

Where do | find it in the Standard?
@ not part of MPI-2
@ explicit programming model (threads) = not viable
@ implemented as an addition to MPI-2

Non-blocking Collective Operations
oe

General Thoughts

What is it?

Where do | find it in the Standard?

@ not part of MPI-2
@ explicit programming model (threads) = not viable
@ implemented as an addition to MPI-2

Why should | invest the additional effort?

@ two main advantages:
@ hide communication latency
©Q lower the effects of process skew
(introduced by OS noise or the algorithm)

Non-blocking Collective Operations
[le]

Overlap

What is overlap and how does it help?

Hardware Parallelism
@ today’s computers communicate without CPU involvement
@ communication in the background, CPU is freed

Non-blocking Collective Operations
[le]

Overlap

What is overlap and how does it help?

Hardware Parallelism

@ today’s computers communicate without CPU involvement
@ communication in the background, CPU is freed

Ah, my program runs faster!?

@ not much - “blocking communication” blocks the CPU :-(
@ CPU waits until the communication is finished
@ non-blocking communication gives control to the user

\

Non-blocking Collective Operations
[le]

Overlap

What is overlap and how does it help?

Hardware Parallelism

@ today’s computers communicate without CPU involvement
@ communication in the background, CPU is freed

Ah, my program runs faster!?

@ not much - “blocking communication” blocks the CPU :-(
@ CPU waits until the communication is finished
@ non-blocking communication gives control to the user

\

But | heard that non-blocking Send/Recv is slow

@ depends on the MPI library

@ some are implemented badly
(e.g. operation is performed blocking during MPI_Wait)

Non-blocking Collective Operations
o]]

Overlap

What can | gain with overlap?

The Latency of Collective Operations
@ often implemented on top of point-to-point messages
@ scales logarithmic O(log»P) or linear O(P) in P

Non-blocking Collective Operations
o]]

Overlap

What can | gain with overlap?

The Latency of Collective Operations

@ often implemented on top of point-to-point messages
@ scales logarithmic O(log»P) or linear O(P) in P

4

Ok, how much is that?

@ simple network model (Hockney) with 1 byte messages
@ time to send from host i to host j (j # i): L

@ L is network dependent:

o Fast Ethernet: L =50 — 60us
o Gigabit Ethernet: L =15 — 20us
o InfiniBand™ : L =2 —7us

= 1us ~ 4000 FLOP of a 2GHz Machine

\

Non-blocking Collective Operations
@000

Process Skew

Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Non-blocking Collective Operations
@000

Process Skew

Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”

Non-blocking Collective Operations
[o] le]e}

 Process Skew

Process Skew - MPI_BCAST Example - Jumpshot

process 0 delayed, black=calculation time, blue=MPI time

)
(]
177)
%)
o
Q
e
—
=7

Non-blocking Collective Operations
[e]e] e}

 Process Skew

Process Skew - MPI_IBCAST Example - Jumpshot

process 0 delayed, black=calculation time, blue=MPI time

)
(]
177)
%)
o
Q
e
—
=7

Non-blocking Collective Operations
[e]ele]]

Process Skew

Great! How do | use it?

Proposal & Interface Definition

Hoefler et. al. (2006): “Non-Blocking Collective Operations for
MPI-2”

Non-blocking Collective Operations
[e]ele]]

Process Skew

Great! How do | use it?

Proposal & Interface Definition

Hoefler et. al. (2006): “Non-Blocking Collective Operations for
MPI-2”

Implementation - LibNBC
@ needs only ANSI C + MPI-1
@ BSD License
@ download from http://www.unixer .de/NBC

LibNBC Usage

NBC_Ibcast (bufl, p, MPI_INT, 0, comm, &req);
NBC_Wait (&req) ;

\

General Application Optimization

Outline

9 General Application Optimization

General Application Optimization
[Je]

Introduction

Acknowledgements

| want to thank some inspiring people!
(alphabetically)

@ George Bosilca, University of Tennessee (LibNBC)

@ Peter Gottschling, Indiana University (3D-CG Solver, Apps)
@ Andrew Lumsdaine, Indiana University (LibNBC, Apps)

@ Wolfgang Rehm, TU Chemnitz (LibNBC, Apps)

@ Jeff Squyres, Cisco Systems (LibNBC)

@ Gilles Zerah, CEA-DAM France (problem of 3D-FFT)

General Application Optimization
oe

Introduction

(incomplete) Classification of parallel Algorithms

Independent Data Applications
@ 3D-CG Poisson solver (inner and halo parts)
@ many implicit iterative solvers (inner and halo parts)

General Application Optimization
oe

Introduction

(incomplete) Classification of parallel Algorithms

Independent Data Applications

@ 3D-CG Poisson solver (inner and halo parts)
@ many implicit iterative solvers (inner and halo parts)

4

Independent Data in Loops

@ parallel compression (blocks independent)
@ multi-dimensional FFT (lines/planes independent)

\

General Application Optimization
oe

Introduction

(incomplete) Classification of parallel Algorithms

Independent Data Applications

@ 3D-CG Poisson solver (inner and halo parts)
@ many implicit iterative solvers (inner and halo parts)

4

Independent Data in Loops

@ parallel compression (blocks independent)
@ multi-dimensional FFT (lines/planes independent)

\

Dependent Data in Loops

@ parallel Gauss Method (HPL, panel broadcast)

@ parallel Cholesky (strong data dependency)

General Application Optimization
L o]

An independent data Algorithm

3D Poisson Solver

PO P1 P2 P3
P4 P5 P6 P7
P8 P9 P10 P11

[0 Process—local data 2 2D Domain
N Halo-data

General Application Optimization
(o] J

An independent data Algorithm

3D-Poisson - Parallel Speedup (Best Case)

100 | Eth blocking - 100, | IB blocking —+— ,
Eth non-blocking | IB non-blocking -
80 e 80 s]
o a o -
8 60 e e e ¥ 8 60
3 - R ol B
@ 40 e 940
QE? ~~~~~~ o "
20 20 2
FE") (x‘“/
0

0
8 16 24 32 40 48 56 64 72 80 88 96

8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs

Number of CPUs
@ “odin”@IU: 128 2 GHz dual Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand ™
@ System size 800x800x800 (1 node ~ 5300s)

General Application Optimization
000

An independent data Loop

Parallel Compression

@ block-by-block parallel compression

@ gather compressed data to a single node

@ compression could also be post-processing
@ widely used to record experimental data

for(i=0; 1 < my_blocks; i++) {
compress_block (1) ;

}

MPI_Gather (<block 0 to my_blocks-1>);

General Application Optimization
(o] le}

An independent data Loop

Pipelined Communication

@ start non-blocking communication after some data is ready
@ two parameters:

@ tile-factor: number of elements per communication
© window-size: number of outstanding requests

for(i=0; 1 < my_blocks/tile; i++) {
for (j=0; j < tile; J++)
compress_block (i*tile + J);
MPI_TIgather (<block i to i+tile-1>);

}

MPI_Waitall (<Igather requests>);

General Application Optimization
[e]e]]

An independent data Loop

Compression - Parallel Speedup (Best Case)

90

90

MPl/blocking MPI/blocking P
80 f NBC/pipe - 80 NBC/pipe - - 4
NBCtiile - 3 NBCttile - - A
70 + NBC/wintile g 70 - NBC/wintile
60 - 60
3 50 3 50 e
$ e, 8 20 o
a 40 a ¢ :
30 =t F 30 pr e
20 A 20 -
10 b i 10 b
W -
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Processors # Processors

@ “odin”@IU: 128 2 GHz dual Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand ™
@ System size 57.22 MB (1 node ~ 9800s)

Use case: A specialized 3D-FFT

Outline

e Use case: A specialized 3D-FFT

Use case: A specialized 3D-FFT
@®00000000

A parallel 3D-FFT

Domain Decomposition

Discretized 3D Domain (FFT-Box)

Use case: A specialized 3D-FFT

A parallel 3D-FFT

Domain Decomposition

Memory layout (3x3x3 box)
(coordinates xyz: 000 — 222)

000|001 {002 010|011 |012 <~
10201021022 {100| 101|102 |-
110|111 112|120 [121 [122 |+«
+12001201{202 210|211 212+~
12201221222

Use case: A specialized 3D-FFT
[e]e] lelelelele]e)

A parallel 3D-FFT

Domain Decomposition

Distributed 3D Domain

&

y

Use case: A specialized 3D-FFT
[e]e]e] lelelele]e)

A parallel 3D-FFT

Domain Decomposition

Blocked data distribution

100[101]102 -
e[110] 111 [112]120]121]122]---

i

Use case: A specialized 3D-FFT
[e]e]e]e] Telelele]

A parallel 3D-FFT

1D Transformation

1D Transformation in z Direction

y 4

y

A parallel 3D-FFT

Use case: A specialized 3D-FFT
[e]e]elele] lelele)

Rearrange Data Layout

rearrange from xyz to xzy (simply swap y and z indices)

100 (101|102 |---

---[110]111]112

120[121]122]---

100[110]120]---
-e-l101]111]121]102]112]122]---

i

Use case: A specialized 3D-FFT
000000800

A parallel 3D-FFT

1D Transformation

1D Transformation in y Direction

p i

y

Use case: A specialized 3D-FFT
000000080

A parallel 3D-FFT

Rearrange Data Layout

rearrange from xzy to yzx (parallel transpose)
= MPI_Alltoall(v)

0[110]120]--- 001[101[201]---
--[101]111]121 112 Li1[211]o21]121]221]---

Use case: A specialized 3D-FFT
0O0000000e

A parallel 3D-FFT

1D Transformation

1D Transformation in x Direction

Use case: A specialized 3D-FFT
@®000000000000

Applying non-blocking Collectives

Non-blocking 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

Use case: A specialized 3D-FFT
@®000000000000

Applying non-blocking Collectives

Non-blocking 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

\

Use case: A specialized 3D-FFT
@®000000000000

Applying non-blocking Collectives

Non-blocking 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

@ start MPI_lalltoall as soon as first xz-plane is ready
@ calculate next xz-plane

@ start next communication accordingly ...

@ collect multiple xz-planes (tile factor)

Use case: A specialized 3D-FFT
0Oe00000000000

Applying non-blocking Collectives

Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)

Use case: A specialized 3D-FFT
0O0e0000000000

Applying non-blocking Collectives

Transformation in z Direction

Transform first xz plane in z direction

S5

pattern means that data was transformed in y and z direction

Use case: A specialized 3D-FFT
0008000000000

Applying non-blocking Collectives

Transformation z Direction

start MPI_lalltoall of first xz plane and transform second plane

cyan color means that data is communicated in the background

Use case: A specialized 3D-FFT
0000800000000

Applying non-blocking Collectives

Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

data of two planes is not accessible due to communication

Use case: A specialized 3D-FFT
0000080000000

Applying non-blocking Collectives

Transformation in x Direction

start communication of the third plane and ...

y X
we need the first xz plane to go on ...

lalltoall!

0000008000000

R
COCOC00000)
RN

AR
DR

—
[
w
[m}
®
°
@
N
s
o
@
a
@
<<
@
1)
«
S
@
w
o

CEROREEry
KR

0
(AR
OO
PLCCKAXNXE
LOOOCOOCO
KR
&

§
OO0
Mo
PO

Y

AR

irection

D

t
. so MPI_Wait for the first MPI

ion In X

Applying non-blocking Collectives

Transformat

and transform first plane (new pattern means xyz transformed)

—
[
w
[m}
®
°
@
N
s
o
@
a
@
<<
@
1)
«
S
@
w
o

0000000 @00000

Applying non-blocking Collectives

Transformat

ion

t

irec

D

ion in X

Wait and transform second xz plane

first plane’s data could be accessed for next operation

-
[
b
[a]
)
]
@
N
]
(53
@
Q
@
<<
@
7]
©
3]
©
w
]

0000000080000

n-blocking Collectives

Applying

ion

t

irec

D

ion in X

Transformat

RN
BOCOOON Y) e
ROV

s

HEOONELSS

RS
DR
..N.N“w%":
00000
00000
RN
POV
RO

MAAANW

wait and transform last xz plane

done! — 1 complete 1D-FFT overlaps a communication

Use case: A specialized 3D-FFT
0000000008000

Applying non-blocking Collectives

Performance Tuning - Parameters

@ number of z-planes to gather before MPI_lalltoall is started
@ very performance critical!
@ not easily predictable

Use case: A specialized 3D-FFT
0000000008000

Applying non-blocking Collectives

Performance Tuning - Parameters

Tile factor

@ number of z-planes to gather before MPI_lalltoall is started
@ very performance critical!
@ not easily predictable

Window size

@ number of outstanding communications
@ not implemented yet
@ not very performance critical — fine-tuning

\

Use case: A specialized 3D-FFT
0000000008000

Applying non-blocking Collectives

Performance Tuning - Parameters

Tile factor

@ number of z-planes to gather before MPI_lalltoall is started
@ very performance critical!
@ not easily predictable

Window size

@ number of outstanding communications
@ not implemented yet
@ not very performance critical — fine-tuning

4

MPI_Test interval

@ progresses internal state and outstanding operations
@ unneccessary in threaded NBC implementation (future)

Use case: A specialized 3D-FFT
0000000000800

Applying non-blocking Collectives

3D-FFT Benchmark Results (small input)

35 —— T 50

ideal I, NBC
s \B& 9 [MPL e
> 40
25 g s
5]
S 20 g
O
2 / c 25
8 15 8
D g 20 =
10 é 15
g 10
5 / O 5l —
0 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Nodes Nodes

@ “tantale’@CEA: 128 2 GHz quad Opteron 844 nodes
@ Interconnect: InfiniBand™
@ System size 128x128x128 (1 node ~ 0.75 s)

Use case: A specialized 3D-FFT
0000000000080

Applying non-blocking Collectives

3D-FFT Benchmark Results (large input) - InfiniBand

200

ideal” NBC single -
180 |- NBC single —— ~ 30} MPIsingle
160 L MPlsingle - s og | NBCdual —x
NBC dual -~ o MPI dual e «
140 . MPldual —= 2 26
a 120 e 24
2 «)
§ 100 - 5 22 g)
o 80 — 5 g 20 -
60 o S 18
o 2 o
40 E 16 /
20 © 14
p;
0 12
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Nodes Nodes

@ “odin”@IU: 128 2 GHz dual Opteron 246 nodes
@ Interconnect: InfiniBand™
@ System size 512x512x512 (1 node ~ 50s)

Use case: A specialized 3D-FFT
00000000000 0e

Applying non-blocking Collectives

3D-FFT Benchmark Results (large input) - Ethernet

200

100

ideal NBC single '
180 |~ NBCsingle —— = 90l MPIsingle i} 0
160 | MPI single = NBC dual -
NBC dual - T gt MPI dual “ =
140 - MPI dual = &
2 120 @ 70 -
S o .
3 100 - c 60
g s .)
n 80 8 50 :
60 < «
40 E Ly
20 . = S a0l
0 20
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Nodes Nodes

@ “odin”@IU: 128 2 GHz dual Opteron 246 nodes
@ Interconnect: Gigabit Ethernet
@ System size 512x512x512 (1 node ~ 50s)

Conclusions and Future

Outline

@ Conclusions and Future Work

Conclusions and Future

Conclusions & Future Work

@ applying NBC requires some effort
@ NBC improves scaling
@ common application patterns exist

Conclusions and Future

Conclusions & Future Work

applying NBC requires some effort
NBC improves scaling
common application patterns exist

tune FFT further (cache issues)
automatic parameter assessment (?)
parallel model for LibNBC

LibNBC features (e.g. Fortran bindings)

Conclusions and Future

Discussion

THE END

Thank you for your attention!

