
VENOM: A Vectorized N:M Format for Unleashing the Power of
Sparse Tensor Cores

Roberto L. Castro∗
roberto.lopez.castro@udc.es

CITIC
Universidade da Coruña

A Coruña, Spain

Andrei Ivanov
anivanov@inf.ethz.ch

Department of Computer Science
ETH Zürich

Zürich, Switzerland

Diego Andrade
diego.andrade@udc.es

CITIC
Universidade da Coruña

A Coruña, Spain

Tal Ben-Nun
talbn@inf.ethz.ch

Department of Computer Science
ETH Zürich

Zürich, Switzerland

Basilio B. Fraguela
basilio.fraguela@udc.es

CITIC
Universidade da Coruña

A Coruña, Spain

Torsten Hoefler
htor@inf.ethz.ch

Department of Computer Science
ETH Zürich

Zürich, Switzerland

ABSTRACT
The increasing success and scaling of Deep Learning models de-
mands higher computational efficiency and power. Sparsification
can lead to both smaller models as well as higher compute effi-
ciency, and accelerated hardware is becoming available. However,
exploiting it efficiently requires kernel implementations, pruning
algorithms, and storage formats, to utilize hardware support of spe-
cialized sparse vector units. An example of those are the NVIDIA’s
Sparse Tensor Cores (SPTCs), which promise a 2× speedup. How-
ever, SPTCs only support the 2:4 format, limiting achievable sparsity
ratios to 50%. We present the V:N:M format, which enables the exe-
cution of arbitrary N:M ratios on SPTCs. To efficiently exploit the
resulting format, we propose Spatha, a high-performance sparse-
library for DL routines. We show that Spatha achieves up to 37×
speedup over cuBLAS.We also demonstrate a second-order pruning
technique that enables sparsification to high sparsity ratios with
V:N:M and little to no loss in accuracy in modern transformers.

KEYWORDS
Neural Networks, Pruning, GPGPU, CUDA, Sparse Tensor Cores
ACM Reference Format:
Roberto L. Castro, Andrei Ivanov, Diego Andrade, Tal Ben-Nun, Basilio
B. Fraguela, and Torsten Hoefler. 2023. VENOM: A Vectorized N:M Format
for Unleashing the Power of Sparse Tensor Cores. In The International Con-
ference for High Performance Computing, Networking, Storage and Analysis
(SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3581784.3607087

1 INTRODUCTION
The rapid progress of Deep Learning (DL) is revolutionizing Artifi-
cial Intelligence (AI) in areas such as Natural Language Processing
∗Corresponding author: Roberto L. Castro (roberto.lopez.castro@udc.es), Universidade
da Coruña, CITIC, Computer Architecture Group, 15071 A Coruña, Spain

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607087

(NLP). Large Language Models (LLMs) are at the forefront of mod-
ern NLP systems [5, 34]; however, their massive growth has led
to unprecedented computational requirements [1, 12, 16, 30]. As a
result, training transformers has become a dominant task in DL,
with costs reaching millions of dollars and significant energy and
carbon emissions [32]. Therefore, it is critical to improve their in-
ference and training performance. One of the most widely used
techniques for this purpose is network pruning [13], which removes
the less significant weights to produce simpler and compressed, yet
accurate models.

There is a plethora of pruning algorithms and sparse formats
focused on accelerating tensor operations such as matrix-matrix
multiplications (MMMs) by means of specialized hardware like Ten-
sor Core Units (TCUs) [37]. While these algorithms and formats
reduce the number of arithmetic operations andmemory usage com-
pared to their dense counterparts, achieving significant speedup
on these accelerators while maintaining model accuracy is chal-
lenging [15]. Semi-structured pruning can yield practical speedups
at moderate sparsity levels (e.g., 80 − 90%) [2, 3, 23]. However, the
irregularity of the sparse input matrices still limits performance
and makes difficult to reach the theoretical peak considering the
reduction of the number of arithmetic operations [9].

Last generations of NVIDIA GPUs include Sparse Tensor Cores
(SPTCs) that are specifically designed for sparse computation [25].
SPTCs promise to accelerate math operations by up to 2× at 50%
sparsity. The data layout proposed to use SPTCs imposes strict con-
straints (i.e., 2:4 format, where every consecutive 4 elements have 2
nonzero values), but it reduces the irregularity of the sparse input
w.r.t. other performance-aware sparse formats (e.g., vector-wise,
block-wise). This makes the N:M format very suitable to execute
on GPUs since it favors key aspects of the execution of tensor oper-
ations such as inter- and intra-warp load balance. However, there
is an important limitation related to the usage of SPTCs and the
2:4 format: recent models like LLMs commonly have hundreds of
millions to trillions of parameters, making it feasible to prune them
to higher sparsity ratios with little or no loss in accuracy [19]. Un-
fortunately, there is currently no hardware support for executing
arbitrary N:M formats with higher compression ratios, which limits
the total achievable speedup.

https://orcid.org/0000-0001-5493-0287
https://orcid.org/0009-0007-9487-9990
https://orcid.org/0000-0001-5670-7425
https://orcid.org/0000-0002-3657-6568
https://orcid.org/0000-0002-3438-5960
https://orcid.org/0000-0002-1333-9797
https://doi.org/10.1145/3581784.3607087
https://doi.org/10.1145/3581784.3607087
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607087&domain=pdf&date_stamp=2023-11-11


SC ’23, November 12–17, 2023, Denver, CO, USA Castro R.L., et al.

Recent research has explored the N:M format [4, 6]. However,
these investigations have been limited to a theoretical perspective,
such as network pruning, or have relied on CPU implementations
due to a lack of hardware support for alternative N:M patterns on
GPUs. To address these limitations, we propose the Vectorized N:M
format, which we refer to as V:N:M1. This format introduces an
abstraction layer over SPTCs, enabling the execution of alternative
N:M formats and arbitrary sparsity ratios. The vectorization aspect
is derived from the selection of vertical vectors of elements that
are stacked together to provide the row-wise N:M pattern. This
approach enables the conversion from generic N:M formats to the
2:4 that is accepted by SPTCs. To efficiently exploit the benefits of
the V:N:M format, we propose Spatha2, a template-based library
dedicated to general matrix-matrix multiplication on half precision
where one of the operands is sparse (SpMM). Spatha serves as
an open-source alternative to cuSparseLt [26] and removes its 2:4
restriction. The main contributions of this paper are:
• A new sparse matrix format V:N:M which enables arbitrary N:M
patterns on SPTCs.

• Highly optimized SpMM kernels to efficiently exploit the V:N:M
format. Specifically, we propose a template-based implementa-
tion that can be tuned depending on the input dynamics, such
as GEMM size or the V:N:M format configuration.

• A second-order pruning technique tailored for the V:N:M format
and scalable to the dimensionality of LLMs. This technique
allows the sparsification to high sparsity ratios with little to
no loss in accuracy (e.g., ∼ 2% drop in BERT F1 score on the
SQuAD dataset with 2:16 sparsity), which is required for the full
exploitation of the V:N:M format.

• Spatha achieves unprecedented speedups w.r.t. its dense coun-
terpart versions (e.g., cuBLAS) yielding up to 37× faster MMMs
on matrices extracted from real-world DL models. Furthermore,
Spatha implementation provides speedups of up to 1.38× over
the vendor library for 2:4 sparsity, cuSparseLt.

• For end-to-end sparse LLMs inference, Spatha shows a GEMM
time reduction of 11× at 2:32 sparsity on real-world models such
as GPT-3.

2 BACKGROUND
This section presents the technical background of the paper, cov-
ering network pruning techniques and the Sparse Tensor Cores of
NVIDIA GPUs.

2.1 Network pruning
In DL, pruning is a technique used to reduce memory usage, which
can also reduce the computational load when combined with com-
pressed storage formats and efficient sparse kernels. Pruning tech-
niques can be categorized based on various criteria, such as the
pruning strategy employed, or the granularity of the pruning.

Pruning schemes are often based on weight saliency metrics,
which directly correlate with the expected impact on accuracywhen
those weights are removed from the network. Various methods exist

1Pronounced “venom”
2SParse linear Algebra rouTines for High-performance Applications. The name is mo-
tivated by the analogy with the Cutlass library, with the accent on sparse computation
- a sharp and efficient tool to cut through the complexity of sparse routines

to select the candidate weights for removal, including magnitude
pruning [18], which selects weights with lower absolute values, and
gradient-basedmethods that use the gradient applied to eachweight
to identify those that are trending towards to zero faster. Within the
gradient-basedmethods, we can find first-order techniques based on
the first-derivative information [31, 38], and second-order ones [7,
19, 21], which pursue to find the set of weights whose removal
will generate a minimum loss increase in the network. Second-
order methods have proven to be effective in pruning convolutional
networks in the past, but they have recently been optimized for
Large Language Models (LLMs) [19].

As for the granularity of the pruning, unstructured methods [11]
remove weights individually, with gradual magnitude pruning
(GMP) being the most commonly used variant [8]. On the other end
of the granularity spectrum, structured methods [24, 35] prune com-
plete components like layers, or heads, in the case of transformers
networks [36]. In between, semi-structured methods prune groups
of weights. These latter methods aim to balance performance and
accuracy by defining specific formats that promote the exploitation
of the underlying hardware more efficiently. These methods often
imply the usage of tailored compressed storage formats and custom
kernels [9, 20]. The N:M format, which enables the use of Sparse
Tensor Cores (SPTCs) in NVIDIA GPUs, can be classified in this
last group.

2.2 Sparse Tensor Cores of NVIDIA GPUs
The CUDA programming model organizes GPU kernels into three
granularity levels: thread-blocks, warps, and threads. A thread block
is composed of a set of warps, with warps being the basic scheduling
unit in CUDA. Each warp consists of 32 threads.

NVIDIA GPUs consist of an array of Streaming Multiprocessors
(SMs), with all SMs sharing the L2 cache, and a DRAMmemory, also
called Global Memory (GMEM). Each SM is divided in processing
blocks, each one having a Register File (RF), a warp scheduler, and
an L0 instruction cache. All the processing blocks within an SM
share a L1 cache, which is partially used as Shared Memory (SMEM).
Each processing block is also equipped with four types of units:
Floating-Point Units (FPU), Tensor-Core Units (TCU), Int Units
(ALU) and Special Function Units (SFU).

0 1 2 3
4 5 6 7

0 3 1 2
1 2 0 1

0 1 2 3
4 5 6 7

x

0
1
2
3
4
5
6
7

0 1 2 3 0 3 1 2

Select

x

0 3 5 6

0 1 2 3 4 5 6 7Sparse Tensor 
Core

2:4 Mux 2:4 Mux

A (Sparse) B (Dense)

R

K K/2

Non-zero  
values 

metadata 
indices 

K/2
2-bit indices

C

K

result

Compress

Figure 1: The 2:4 format and its mapping to SPTCs

Last generations of NVIDIA GPUs have extended their TCUs
to also handle row-wise 2:4 sparsity. These updated TCUs include
hardware support for sparse computation, and are referred to as
Sparse Tensor Cores (SPTCs). To exploit SPTCs, the first argument
in tensor operations must be stored in NVIDIA’s N:M sparse format,
where 𝑁 represents the maximum number of non-zero elements in



VENOM: A Vectorized N:M Format for Unleashing the Power of Sparse Tensor Cores SC ’23, November 12–17, 2023, Denver, CO, USA

a block of 𝑀 values. Figure 1 illustrates this format. The left side
of the figure shows an uncompressed sparse matrix following the
row-wise 2:4 pattern. The compression of that 𝑅×𝐾 matrix requires
two structures: (1) a 𝑅 × 𝐾/2 matrix representing the values of the
non-zero elements, and (2) a metadata structure which contains the
position of each nonzero valuewithin each group of 4 values. Finally,
Figure 1, right side, illustrates the mapping of a 2:4 sparse operation
onto SPTCs. Notice that the metadata structure is also used by the
hardware to select the corresponding elements in the dense matrix
𝐵 and perform the Matrix Multiply-Accumulate (MMA) operation.

Precision Format Supported shapes

fp32 1:2 𝑘8, 𝑘16
half (fp16) 2:4 k32, k16

uint8 2:4 𝑘32, 𝑘64
uint4 2:4 𝑘64, 𝑘128

Table 1: Matrix Shapes for mma.sp on SPTCs. 𝑀 and 𝑁 di-
mensions are fixed to 16 and 8, respectively (𝑚16𝑛8)

SPTCs can be accessed in CUDA using the NVPTX API which
includes the mma.sp instruction. SPTCs support various shapes of
this instruction depending on the data precision (Table 1). This in-
struction multiplies a𝑚×𝑘 matrix by a 𝑘 ×𝑛 matrix, where𝑚 = 16,
𝑛 = 8 are fixed dimensions, and 𝑘 represents the sparsified dimen-
sion which can vary in size. This paper focuses on half precision
kernels. Instruction shapes define the sizes of the left-hand-side
(LHS) and the right-hand-side (RHS) operands as inputs to TCUs.
For example, 𝑘 = 32 implies that the LHS operand has a shape of
𝑚 × 𝑘 = 16 × 32 while the RHS is 𝑘 × 𝑛 = 32 × 8. It is important to
note that the LHS is 50% sparse, meaning that its real size will be
16 × 16(32/2). NVIDIA’s notation for this instruction is𝑚16𝑛8𝑘32.

3 THE V:N:M FORMAT
This section presents the new V:N:M format, which enables prun-
ing to arbitrary N:M ratios retaining the use of SPTCs, which are
designed to support only 2:4 patterns natively.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

2:6

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

16 19 22

17 20 23

18 21 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

V

Vector-wise N:M
V:N:M

1 0 2 0
0 5 0 6
9 0 10 0

2:4

1 2 3 4 5 6

7 8 9 1011 12

131415 1617 18

V

Block-wise

V

1 2 3

1 2 3+ + +

4

Figure 2: The V:N:M pruning procedure

Sparse compression formats are of great significance in many
HPC areas other than DL. However, the characteristics of the sparse
matrices in DL workloads differ from those in other areas in several
aspects [9]: (1) the sparsity level is generally much lower, (2) the
number of non-zeros per row is higher and (3) the load imbalance

is more pronounced. To address these challenges, ad-hoc solutions
for DL workloads have been developed in two different planes:
compression formats and pruning techniques, often interlinked.
They seek the efficient exploitation of the hardware during the
execution of tensor operations in DL workloads.

A new area of research is focused on enhancing control over the
distribution of non-zero elements in sparse matrices. This involves,
for example, selecting 2D dense groups with size 𝑣 × 𝑣 (Figure 2, 1 )
or 1D groups of length 𝑣 , either row-wise or column-wise 2 . The
aim is to create sparse matrices that are more regular, making them
more suitable for efficient execution on GPUs. Block-based pruning
techniques ( 1 and 2 ) are particularly useful on improving data
reuse on L1 cache or registers during the multiplication of sparse
matrices. Furthermore, optimized sparse formats, which compress
their data, can be designed to facilitate traversal for the access
patterns that arise during matrix multiplication [23, 28].

On the one hand, 1 can be overly aggressive in dropping blocks
of elements, leading to a significant reduction in accuracy as the
sparsity level increases. On the other hand, 2 offers more flexibility
and enables higher sparsification ratios. However, using small vec-
tor lengths is a limiting factor to prevent accuracy loss (e.g., 𝑣 ≤ 8).
Furthermore, in these approaches, the different number of elements
per row can generate load imbalance and inherent negative effects
such as thread divergence, inefficient memory transactions and low
occupancy ratios.

The N:M format 3 provides an alternative that overcomes most
of the weaknesses of other performance-aware methods. Moreover,
NVIDIA GPUs recently included hardware support for this format,
but it is limited to 2:4. This paper introduces the new V:N:M for-
mat 4 which combines block-wise storage, and vector-wise and
N:M pruning to enable the exploitation of SPTCs for arbitrary N:M
patterns, leveraging higher compression ratios and reducing further
the number of arithmetic operations required in MMMs.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

2425 26 27

28 29 30 31

V=4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 2 0 1

1 3 1 2

0 2 2 3

1 2 1 2

1 2 0 2

0 1 1 3

2 3 0 3

0 1 0 2

0 2 5 7 1 2 5 7
0 3 6 7 1 2 3 6

Non-zero  
values

m-indices 
2bits/elem 

column-loc

Sparse Matrix 

N:M=2:8

R

K K/M*2 K/M*2

K/M*4

R/V

Figure 3: The V:N:M compression format

Figure 2, illustrates how this approach starts by partitioning the
original dense matrix in blocks of 𝑉 × 𝑀 elements (block-wise).
Then, the four most significant columns of each block are selected
(vector-wise pruning), and for each row of four elements in a block,
the two most meaningful weights are kept (2:4 pruning). These two
levels of pruning (vector-wise and N:M) enable the exploitation of
SPTCs for matrices with arbitrary levels of sparsity, as the vector-
wise pruning stage diversifies the sparsity level, and N:M pruning
imposes the restrictions required later by SPTCs. That is, in 4 ,



SC ’23, November 12–17, 2023, Denver, CO, USA Castro R.L., et al.

the SPTC vector is 2:4, but it belongs to a 6-columns row, where 2
columns were fully pruned. It is actually an implementation of a
2:6 sparsity pattern that it is mapped onto SPTCs as the required
2:4.

Finally, the data is represented using a new block-wise com-
pression format shown in Figure 3. As for the NVIDIA 2:4 layout
(Figure 1), the format requires an array with the non-zero values,
and a 2-bit metadata index per non-zero (m-indices). Notice that
now, each 2-bit metadata index refers to one of the 4 columns
that we have selected in each block and not to each column of the
original dense input matrix (see 4 in Figure 2). Furthermore, the
size of these two structures depends on the M value, more specifi-
cally their shape now is 𝑅 × 𝐾/𝑀 × 2. This format requires a third
structure column-loc of size 𝑅/𝑉 ×𝐾/𝑀 × 4, that indicates which 4
columns (out of𝑀) of each block were selected in the vector-wise
pruning stage. Thus, while CSR storage overhead can reach up to
200% [25], V:N:M can be represented with 2-bit m-indices metadata
per value, and up to 8-bit column-loc metadata per value every 𝑉
rows. For 𝑉 = 128, the overhead is ∼ 13.28%.

4 SPATHA: A HIGH-PERFORMANCE SPARSE
LIBRARY FOR SPARSE MMM

This section provides an in-depth description of the sparse kernel
implementation associated to the V:N:M format, Spatha. The Sparse
Matrix-Matrix multiplication (SpMM) is an important workload in
DL that serves as the sparse counterpart to Matrix-Matrix Multipli-
cation (MMM). This routine is widely used in various components
of modern DL models. For instance, in the forward pass of a pruned
model, the sparse weight matrix is multiplied by a dense activation
matrix. Similarly, in transformers, the self-attention operation is
performed by multiplying a sparse attention weight matrix by a
dense one. Thus, optimizing this routine is crucial to improve the
efficiency and the performance of our models.

K

v

R
Compress

4:2:8 sparsity  
(2 non-zeros  

out of 8)

Select

x

...

Select

Sparse Tensor 
Core

Non-zero  
values

m-indices

column-loc K

C

A (Sparse)

B (Dense)

C (Dense)

result

Select matching K/M*4 elements  
out of K

Figure 4: Mapping a 4:2:8 format onto Sparse Tensor Core
(only native support to 2:4 format)

Figure 4 shows an example of how the new V:N:M format (4:2:8
in the figure) is mapped onto SPTCs, which natively only support
the 2:4 format. It shows how the SPTC is fed with the appropriate
values from a row of the sparse matrix and a column of the dense

matrix. The LHS operand is a 𝑅 × 𝐾/4 dense matrix after having
been pruned with sparsity of 75% (2:8). This pruning reduces the
required multiply-and-add operations by 4 (from 16 to 4), but also
halves the rows loaded from the dense matrix B (selected by the
values contained in column-loc).

4.1 Kernel design
The design of an efficient CUDA kernel mostly depends on three
main stages: (1) the efficient loading of the data to the top lev-
els of the memory hierarchy (i.e., GMEM->SMEM->RF), (2) the
computation, and (3) the storage of the results (i.e. RF->SMEM-
>GMEM). Figure 5 covers stage 1, particularly the data movement
from GMEM to RF, which is divided into 3 steps ( 11 - 13 ). Figure 6
focuses on stage 2, and shows how the data in the RF is mapped
onto SPTCs in three steps ( 21 - 23 ). Finally, Figure 8 illustrates how
stage 3 is performed (steps 31 - 32 ).

...

0 2 5 7
column-loc

V

V

row 0
row 2
row 5
row 7

<BSr=V

<BSk

<BSc

Warp 0V

<WSr

<WSk

<BSk

<R

<K

<C

<WSc
WSkNon-zero  

values m-indices

(Global Memory) (Shared Memory) (Register File)

batchSize

11

Pipelining (async)
12 13

Blocked SpMM Thread Block Tile Warp Tile

A (Sparse)

B (Dense)

C (Dense)

Figure 5: Thread-Block Tile and Warp tile view (stage 1)

Spatha is designed as a template-based library, where several
parameters can be tuned depending on the input properties. Consid-
ering a 𝑅 ×𝐾 ×𝐶 GEMM problem, these parameters are: the thread-
block tile size (𝐵𝑆𝑟×𝐵𝑆𝑘×𝐵𝑆𝑐 ), the warp tile size (𝑊𝑆𝑟×𝑊𝑆𝑘×𝑊𝑆𝑐 ),
the mma instruction shape (𝑀𝑀𝐴𝑟 ×𝑀𝑀𝐴𝑘 ×𝑀𝑀𝐴𝑐 ) and the level
of memory pipelining (batchSize).

4.1.1 Stage 1-Data loading. Figure 5 shows the Spatha procedure to
load the operands from GMEM onto RF. There are two dimensions
to be taken into account: the data location (i.e., GMEM, SMEM,
and RF), and the scope of this data from the NVIDIA programming
model perspective (i.e., thread-block, and warp). Step 11 loads the
column-loc structure from GMEM to SMEM with a two-level pre-
fetching strategy. Note that the column-loc information is used to
select the rows of B to be loaded from GMEM (Figure 5, left side)
to SMEM (step 12 ). Pre-fetching this information breaks the data
dependency with the activation matrix. Furthermore, column-loc is
small, so it is convenient to load the information of multiple tiles
together to maximize memory bandwidth. Next, step 12 loads the
corresponding A and B tiles from GMEM to SMEM. Each thread-
block is responsible for an output block of size 𝐵𝑆𝑟 × 𝐵𝑆𝑐 . More
specifically, 𝐵𝑆𝑟 = 𝑉 , so each thread-block will load only the rows
of B selected by the column-loc structure. In order to avoid memory
stalls due to data dependencies with the next steps, we pipelined
step 12 with step 13 and stage 2 (computation) taking advantage
of CUDA asynchronous copies. The pipelining degree depends on
the batchSize variable previously mentioned. Finally, in 13 , each
warp is responsible for an output block of size 𝑊𝑆𝑟 ×𝑊𝑆𝑐 , so



VENOM: A Vectorized N:M Format for Unleashing the Power of Sparse Tensor Cores SC ’23, November 12–17, 2023, Denver, CO, USA

the corresponding tiles are loaded from SMEM to RF. Emphasize
that all the previously mentioned memory transactions have been
optimized to use 128-bit instructions. At this point, we also load
directly to the RF the m-indices information.

4.1.2 Stage 2-Computation. When all the data is loaded in the RF,
stage 2 starts, which performs the Matrix Multiply-Accumulate
(mma.sp) on this data using SPTCs. Figure 6 shows a detailed view
of stage 2 , depicting how the data in the RF is mapped onto SPTCs
to be executed. Each warp has to break down the warp tile into
instruction tiles, which depends on the instruction shapes available
on SPTCs, in this example m16n8k32. The first step 21 , selects
𝑀𝑀𝐴𝑘 = 16 elements from the warp tile and maps this data to
SPTCs following step 22 layout. This layout represents the LHS
fragment to the mma.sp instruction. That means that, if𝑊𝑆𝑟 =

32, we will need to iterate twice over the rows of A’s warp tile.
Similarly, the next step maps the B’s warp tile information into
SPTCs following step 23 layout, which represents the RHS fragment
to the mma.sp instruction. At this point, the mma.sp instruction is
executed.

b0 b0 b0 b0
b1 b1 b1 b1

... ... ... ...

b0 b0 b0 b0

b1 b1 b1 b1
... ... ... ... ...

WSr 

MMAk=16 (32/2)

WSk

WSc

0

1

2

3

4

5

6

7

8

a0 a1 a0 a1
a2 a3 a2 a3
a4 a5 ... a4 a5
a6 a7 a6 a7

T0 T4

0

1

...

6

7

T24 T28 

0 1 .. 6 7

Tx = Thread x 

0 1 ... 6 7

T0 T3

a0 a1 a0 a1
a2 a3 a2 a3
a4 a5 ... a4 a5
a6 a7 a6 a7

0 1 ... 6 7

T16 T19

0
1
2
3
4
5
6
7
8
...
15

T0{a2,a3} T3{a2,a3}
... ... ...

T28{a2,a3} T31{a2,a3}

8
...

31

T0{c0,c1} T3{c0,c1}
T4{c0,c1} T7{c0,c1}
T8{c0,c1} ... T11{c0,c1}

T12{c0,c1} T15{c0,c1}
T16{c0,c1} T19{c0,c1}
T20{c0,c1} ... T23{c0,c1}
T24{c0,c1} T27{c0,c1}
T28{c0,c1} T31{c0,c1}

0
1
2
3
4
5
6
7

0-1 ... 6-7

8
...
15

T0{c2,c3} T3{c2,c3}
... ... ...

T28{c2,c3} T31{c2,c3}

WSr=32

16

a8 a9 a8 a9
a10 a11 a10 a11
a12 a13 ... a12 a13
a14 a15 a14 a15

8 9 ... 15 16

T0 T3

a8 a9 a8 a9
a10 a11 a10 a11
a12 a13 ... a12 a13
a14 a15 a14 a15

8 9 ... 15 16

T16 T19

T0{a8,a9} T3{a8,a9}
T4{a8,a9} T7{a8,a9}
T8{a8,a9} T11{a8,a9}
T12{a8,a9} ... T15{a8,a9}
T16{a8,a9} T19{a8,a9}
T20{a8,a9} T23{a8,a9}
T24{a8,a9} ... T27{a8,a9}
T28{a8,a9} T31{a8,a9}

8-9 ... 14-15

T0{a8,a9} T3{a8,a9}
... ... ...

T28{a8,a9} T31{a8,a9

 x4 times

MMAr=16 

MMAc=8 

WSk MMAk=32

T1,T2 T1,T2

T17,T18 T17,T18

T0{a0,a1} T3{a0,a1}
T4{a0,a1} T7{a0,a1}
T8{a0,a1} T11{a0,a1}
T12{a0,a1} ... T15{a0,a1}
T16{a0,a1} T19{a0,a1}
T20{a0,a1} T23{a0,a1}
T24{a0,a1} ... T27{a0,a1}
T28{a0,a1} T31{a0,a1}

0-1 ... 6-7

21

22

23

A

B

C

T3 T7 T27 T31 

Figure 6: SPTCs view

Storage order. Related to stage 1 and 2 , we propose a specific
order to store the non-zero values and the m-indices structure of
the V:N:M format, which merges, once again, the block-wise and
the N:M principles. This order is represented in Figure 7, and it
seeks to optimize the data traversal during the data loading and
computation. In this representation, half of the non-zero structure
shows the access pattern followed to store the data, while the other
half shows how the second half-warp is mapped into this structure.
This storage order enables 128-bit memory transactions, ensures
memory coalescence, and can dispense with the ldmatrix instruc-
tion, which is known to cause bank conflicts and can require more
SMEM transactions to sequentially serve the memory access [33].

4.1.3 Stage 3-Result storage. Once the product is calculated, we
have towrite the output tiles back to GMEM (stage 3 ). This requires
storing the intermediate partial results in SMEM. On NVIDIA GPUs,
shared memory is partitioned into banks, each one of 32 bits. Each
bank can only address one position at a time, so if a quarter-warp
(128-bit instructions) tries to access the same bank, the instruction
will be serialized. This effect is known as bank conflict. An example
of thread mapping to SMEM with 𝐵𝑆𝑐 = 64 is shown in Figure 8.

T16 T17 T18 T19
T16 T17 T18 T19
T16 T17 T18 T19
T16 T17 T18 T19
T20 T21 T22 T23
T20 T21 T22 T23
T20 T21 T22 T23
T20 T21 T22 T23
T24 T25 T26 T27
T24 T25 T26 T27
T24 T25 T26 T27
T24 T25 T26 T27
T28 T29 T30 T31
T28 T29 T30 T31
T28 T29 T30 T31
T28 T29 T30 T31

MMAm=16

MMAk=32
Non-zero  

values m-indices

<WSm=32

<WSk

32 bits

128 bits 16 bits

Figure 7: Storage order

The left side of the figure shows how the threads in a warp are
mapped to SMEM banks during the storage of their partial results
(step 31 ). These stores are performed with 128-bit instructions.
Padding elements have been added to avoid bank conflicts. In this
specific example, each thread has accumulated 8 partial results
(𝐵𝑆𝑐/𝑀𝑀𝐴𝑐 = 64/8), so the thread mapping is repeated 8 times,
meaning that each thread needs 8 iterations to store its partial
results. Each color represents a quarter-warp, so we can see that
each group of 8 consecutive threads accesses a different memory
bank in the same iteration.

0 1 4 5 8 9 12 13
16 17 20 21 24 25 28 29
PAD PAD PAD PAD 2 3 6 7
10 11 14 15 18 19 22 23
26 27 30 31 PAD 0 1 4
5 8 9 12 13 16 17 20
21 24 25 28 29 PAD PAD PAD
PAD 2 3 6 7 10 11 14
15 18 19 22 23 26 27 30
31 PAD
... ... ... ... ... ... ... ...

0 1 4 5 8
9 12 13 16 17 20 21 24
25 28 29 PAD PAD PAD PAD 2
3 6 7 10 11 14 15 18
19 22 23 26 27 30 31 PAD

x8
times 

0 0 8 8 16 16 24 24
0 0 8 8 16 16 24 24

PAD PAD PAD PAD 0 0 8 8
16 16 24 24 0 0 8 8
16 16 24 24 PAD 1 1 9
9 17 17 25 25 1 1 9
9 17 17 25 25 PAD PAD PAD

PAD 1 1 9 9 17 17 25
25 1 1 9 9 17 17 25
25 PAD
... ... ... ... ... ... ... ...

7 7 15 15 23
23 31 31 7 7 15 15 23
23 31 31 PAD PAD PAD PAD 7
7 15 15 23 23 31 31 7
7 15 15 23 23 31 31 PAD

128 bytes 128 bytes

Bank 0~3
31 32

Figure 8: Conflict-free accesses for output tiles on SMEM

The right side of Figure 8 shows step 32 , that is, the SMEM thread
mapping designed to read the previously stored intermediate results,
and finally, write them back to GMEM. The loads from SMEM and
the stores to GMEM are performed with 128-bit instructions. Once
again, each thread will need to access SMEM 8 times to read all the
data. We have colored the accesses related to the first quarter-warp,
what depicts a conflict-free layout.

Ablation study - Spatha performance and column-loc over-
head. In Figure 9, we present the results of a microbenchmark
study on matrices of fixed outer dimensions (corresponding to the
size of one BERT𝑙𝑎𝑟𝑔𝑒 weight linear layer), but varying the inner
(sparsified) one, 𝐾 (1024 × 𝐾 × 4096). The study was conducted
using different sparsity levels, specified by different N:M combina-
tions (from 2:10 to 2:100), while the vector size𝑉 was kept constant
at 128. Furthermore, to measure the effect of using the column-
loc mechanism, we tested the performance with and without this
structure. In the latter we used fixed indexes to simulate an ideal
situation with no memory accesses. These experiments are per-
formed on an NVIDIA RTX 3090 GPU, equipped with SPTCs. The



SC ’23, November 12–17, 2023, Denver, CO, USA Castro R.L., et al.

76
8
15

36
23

04
30

72
38

40
46

08
53

76
61

44
69

12
76

80
84

48
92

16
99

84
10

75
2

11
52

0
12

28
8

K
80% [128:2:10]

0

1

2

3

4

76
8
15

36
23

04
30

72
38

40
46

08
53

76
61

44
69

12
76

80
84

48
92

16
99

84
10

75
2

11
52

0
12

28
8

K
90% [128:2:20]

0

2

4

6

8

76
8
15

36
23

04
30

72
38

40
46

08
53

76
61

44
69

12
76

80
84

48
92

16
99

84
10

75
2

11
52

0
12

28
8

K
95% [128:2:40]

0

5

10

15

w/ column-loc w/o column-loc

76
8
15

36
23

04
30

72
38

40
46

08
53

76
61

44
69

12
76

80
84

48
92

16
99

84
10

75
2

11
52

0
12

28
8

K
98% [128:2:100]

0

10

20

30

40

S
pe

ed
U

p 
w

.r.
t. 

cu
B

LA
S

Sparsity [%] (V:N:M)

Figure 9: Ablation study of column-loc with different sizes of the inner 𝐾 dimension and different V:N:M formats (𝐵𝐸𝑅𝑇𝑙𝑎𝑟𝑔𝑒 )

32 64 12
8

V 
 71% [V:2:7]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

32 64 12
8

V 
 75% [V:2:8]

32 64 12
8

V 
 80% [V:2:10]

32 64 12
8

V 
 90% [V:2:20]

32 64 12
8

V 
 95% [V:2:40]

32 64 12
8

V 
 98% [V:2:100]

32-bit
128-bit

Sparsity [%] (V:N:M)

S
pe

ed
up

 w
.r.

t. 
cu

B
LA

S

Figure 10: Scaling study of wide shared memory stores for
different V:N:M configurations

results show that Spatha achieves speedups for sparse computation,
approaching theoretical peak performance for a given sparsity level
considering the operation count reduction w.r.t. the dense counter-
part version. This effect becomes more pronounced as the GEMM
problem size increases, as it tend to have higher arithmetic intensity.
For instance, at a sparsity level of 80% (2:10 format), the speedup
is approximately 4.5×, where 5× is the ideal scenario. Then, the
speedups reported are 8.5×, 17.5×, and 37× for sparsity levels of
90% (2:20), 95% (2:40) and 98% (2:100), whose theoretical caps are
10×, 20× and 50×, respectively. It can be observed that, for every
sparsity ratio, the column-loc structure’s overhead has a negligible
effect on the overall time, despite being a software approach to
support arbitrary N:M ratios. However, the impact of column-loc
becomes slightly more noticeable when dealing with 2:100 sparsity,
which is not practical for DL applications in real-world scenarios.

Scaling study - Impact of V and output layout format. The
𝑉 variable in our V:N:M format can be used to define trade-offs
between performance and accuracy in the same way that the block-
size in block-wise pruning, for example. To study this, we performed
a second ablation study on one matrix from 𝐵𝐸𝑅𝑇𝑙𝑎𝑟𝑔𝑒 (size 1024 ×
4096× 4096). Figure 10 shows the performance results of Spatha on
this matrix using three different vector lengths: 32, 64 and 128. This
test is conducted for different sparsity levels, in practice, the test
explores different configurations of the V:N:M values. Furthermore,
in order to study the impact of the previously proposed layout for
writing back results (Figure 8), it is compared the effect of using

50% (2:4) 60% (2:5) 75% (2:8) 80% (2:10) 90% (2:20) 95% (2:40)
Sparsity [%] (N:M)

0.0

0.2

0.4

0.6

0.8

En
er

gy

BERT-base encoder.layer.8.attention.self.query.weight: 768x768 

ideal
1:N:M
16:N:M
32:N:M
64:N:M
128:N:M
vw_4
vw_8
vw_16
vw_32

Figure 11: Energy evaluation study on the V:N:M format

such layout, enabling 128-bit SMEM stores instead of 32-bit ones. As
we can see in Figure 10, the difference in terms of speedups between
the three selected vector lengths is noticeable, the value of 𝑉 being
conditioned by the accuracy loss. The effect of using 128-bit stores
instead of 32-bit ones is noticeable in this problem size, bringing
up to a 2× difference in the final speedup. We performed a similar
ablation test for a matrix of a GPT-3model (size 36864×12288×4096)
and the effect of using 128-bit stores was attenuated, as the weight
of the output phase in the total execution time is smaller.

5 ENERGY EVALUATION OF V:N:M
DL pruning techniques aim to achieve the highest possible spar-
sity levels in the pruned models while ensuring little to no loss
in accuracy. This becomes especially challenging when the target
sparse format requires a specific pruning scheme, and when high
sparsity levels are targeted. In these scenarios, the percentage of
non-zero values is low, and their location is heavily influenced by
the format. Therefore, it is crucial to demonstrate the effectiveness
of new sparse formats, to ensure its applicability with minimal or
no impact on accuracy.

The energy evaluation metric (magnitude preservation) [22, 29]
is employed to measure the flexibility of a format by comparing
the total magnitude of the model (sum of the individual weights)
before and after pruning to a specific format. Let us assume a well-
optimized dense model 𝑤∗ ∈ R𝑑 , where 𝑑 is the total number of
weights. We wish to prune 𝑤∗ to a target sparsity 𝑠 ∈ (0, 1] by



VENOM: A Vectorized N:M Format for Unleashing the Power of Sparse Tensor Cores SC ’23, November 12–17, 2023, Denver, CO, USA

zeroing out 𝑠 × 𝑑 weights. The result is a sparse model𝑤 ∈ R𝑠×𝑑 .
The energy metric is defined as follows:

𝑒𝑛𝑒𝑟𝑔𝑦 =

∑𝑠×𝑑
𝑖=0 |𝑤𝑖 |∑𝑑
𝑖=0 |𝑤∗

𝑖
|

This metric yields a normalized score between 0 ∼ 1, the higher
the better.

Figure 11 presents the energy evaluation study for a weight ten-
sor extracted from an encoder layer of BERT𝑏𝑎𝑠𝑒 . This figure com-
pares three weight selection policies: unstructured (ideal), V:N:M
with different 𝑉 values, and vector-wise pruning with several vec-
tor lengths 𝑙 (𝑣𝑤_𝑙). The evaluation is done for different sparsity
levels, whose value in the V:N:M format is controlled by the N:M
ratio.

Unstructured magnitude-pruning represents the ideal non-zero
selection policy, as it does not impose any restrictions on the lo-
cation of non-zeros. Vector-wise pruning can accelerate sparse
routines on GPUs. However, if the vector length is > 8, it can sig-
nificantly reduce the accuracy [2, 3, 23]. The results demonstrate
that the V:N:M format occupies an intermediate position between
unstructured and vector-wise pruning. Moreover, it is highly robust
to changes in the vector length, allowing the usage of 𝑉 = 128
while consistently preserving more energy than 𝑣𝑤_8 and 𝑣𝑤_4.

Additionally to the previous conclusions, independently of the
selected pruning method, we can also see the tremendous impact
on the energy of magnitude-based weight selection policies. At 50%
of sparsity, unstructured pruning already lost 20% of the original
dense matrix energy. At the other side, at 95% only 20% of the
original energy remain in the pruned dense matrix. Thus, we can
conclude that, in order to achieve moderate to high sparsity ratios
in models with the dimensionality of BERT, more sophisticated
pruning methods must be used. Second-order pruning offers an
alternative to these problems.

6 SECOND-ORDER PRUNING
Magnitude-based pruning techniques provide a straightforward
approach to reducing the size of our models without requiring
model evaluation for weight selection. However, while magnitude
pruning can be effective at moderate sparsity levels, it becomes
more challenging to select the "least significant" weights to remove
when aiming for high sparsity ratios, and this can significantly
impact network accuracy.

In contrast, second-order pruning methods offer a more sophis-
ticated approach to select weight candidates for removal, by con-
sidering the difference in loss relative to the current model. Hence,
they target to find the set of weights whose removal will generate
a minimum loss increase. In this context, the Hessian matrix is
a key component of second-order pruning methods which repre-
sents the matrix of second-order derivatives of the loss function
w.r.t. the weights, mathematically expressed as 𝐻 = ∇2

𝑤𝐿, for a
twice-differentiable loss 𝐿. The Fisher matrix is very similar to the
Hessian matrix but in the probabilistic setting, used to estimate the
curvature of the loss function around the current value. As a result,
this approximation allows to identify the weight parameters that
have less impact in the loss function, and therefore are candidates
to be pruned [13].

6.1 The V:N:M format in 2nd order methods
This section introduces a new second-order pruning method based
on [19] and tailored for the V:N:M format. This type of approach
yields state-of-the-art results in LLMs for unstructured and semi-
structured (block) compression.

Let us assume we have a well-optimized dense model𝑤∗ ∈ R𝑑 ,
where 𝑑 is the total number of weights. Our target is to identify a
set of weights 𝑄 that we can prune with a minimum loss increase.
The following saliency score function is defined to rank groups of
weights [19]:

𝜌𝑄 =
1
2
(𝐸𝑄𝑤∗)𝑇 (𝐸𝑄𝐹−1 (𝑤∗)𝐸𝑇𝑄 )

−1𝐸𝑄𝑤
∗

where,
• 𝐹−1 (𝑤) ∈ R𝑑×𝑑 is the Fisher matrix.
• 𝐸𝑄 ∈ R |𝑄 |×𝑑 is a matrix composed of the corresponding
canonical basis vectors for a set of 𝑄 weights.

Thus, the set of canonical basis vectors 𝐸𝑄 depends on the spe-
cific sparse format we are using. For instance, in 2:4 sparsity, the
canonical vectors are:

𝐸𝑄 = [[1,1,0,0], [1,0,1,0], [1,0,0,1], [0,1,1,0], [0,1,0,1], [0,0,1,1]]

As observed, 𝐸𝑄 encompasses all possible correlations between
2 weights, in a set of 4 elements. In general, for an N:M format, this
approach requires evaluating

(𝑀
𝑁

)
combinations to determine the

best one, which can turn into an intractable combinatorial problem.
Furthermore, in the V:N:M format, the addition of a new dimension
𝑉 amplifies the complexity as it requires finding the optimal set of
𝑉 × 𝑁 weights, leading to a combinatorial explosion.

To address these challenges, we adopt a similar approach as [19]
between sets of 𝑄 elements, which involves disregarding correla-
tions between rows within 𝑉 ×𝑀 blocks. This simplification drops
the number of combinations to evaluate. Additionally, to mitigate
combinatorial issues that may still arise within 1 ×𝑀 groups, we
propose a pair-wise approach where correlations are calculated
between pairs of elements, that is:

𝐸𝑄 = [[1, 0], [0, 1], [1, 1]]

The overhead of this pair-wise approach represents < 1% of the
sparsification process. Then, depending on the 𝑁 and𝑀 values, we
can modulate the complexity of the problem to be solved by dy-
namically selecting the m-combinatorial or the pair-wise approach.

6.1.1 Gradual pruning definition. The N:M format prunes a model
to a target sparsity 𝑠 ∈ (0, 1]. Typically, the 𝑠 × 𝑑 weights are
removed in one step (one-shot pruning). For 50% (2:4) sparsity,
this approach can be applied in most cases and the models still
recover the original accuracy. However, for higher sparsity ratios,
one-shot pruning reduces severely the model performance and
makes hard to recover the original accuracy using additional fine-
tuning steps. This negative effect on accuracy also happens in
second-order methods, where one-shot pruning can result in worse
Taylor approximations of the function. We propose a structure
decay scheduler for the V:N:M format, which performs N:M pruning
across different 𝛽 steps, for increasing sparsity levels. This scheduler
starts with a high initial value of 𝑁0 >> 𝑁𝛽 (lower sparsity), where
𝑁𝛽 is our target 𝑁 value, and gradually decreases 𝑁 (conversely



SC ’23, November 12–17, 2023, Denver, CO, USA Castro R.L., et al.

increasing sparsity) until it reaches the 𝑁 target value. This gradual
pruning approachmitigates the adverse effects on network accuracy
and improves accuracy recovery in subsequent fine-tuning stages.

7 EVALUATION
We evaluate the performance on an NVIDIA RTX 3090 GPU of
the Ampere architecture equipped with SPTCs. We compare the
performance of Spatha with different sparse libraries (cuSparseLt,
cuSparse, CLASP, and Sputnik) and also with a dense counterpart
version (cuBLAS). We build our benchmarks on matrices from the
DLMC dataset [10], and real-world LLMs. Additionally to these
micro benchmarks, we also conduct a case study on real-world ap-
plications. At this point, we demonstrate the proposed second-order
pruning technique, and we benchmark the end-to-end performance
of Spatha on different LLM models (BERT, GPT-2, and GPT-3).

7.1 Comparison with existing dense and sparse
libraries

Firstly, we evaluate our baseline implementation for 1:2:4 spar-
sity (50%). Since higher N:M ratios will depend on this baseline’s
performance, it is crucial to have good speedup results in this con-
figuration. We selected cuBLAS GEMM as our dense counterpart,
and for exploiting the 2:4 format on SPTCs, we used the cuSparseLt
SpMM implementation, which represents the reference library on
this format. Our experiments involve varying sizes of a 𝑅 × 𝐾 ×𝐶
GEMM problem, where 𝑅 and 𝐶 are predetermined values from
two BERT’s weight linear layers (768 and 4096 for BERT𝑏𝑎𝑠𝑒 , 1024
and 4096 for BERT𝑙𝑎𝑟𝑔𝑒 ). The inner dimension 𝐾 of the product,
which is the sparsified one, is variable in these experiments. Note
that the inner dimension is usually scaled up to enhance the net-
work accuracy. For instance, GPT-3 uses a hidden size of 12288 [1].
Figure 12 reports the performance of the three contending imple-
mentations (cuBLAS, cuSparseLt and Spatha) and the speedups of
the selected sparse libraries w.r.t. cuBLAS. The results show that
the performance of the sparse implementation improves with the
GEMM size, as larger GEMMs tend to have larger arithmetic in-
tensity. In these microbenchmarks, BERT𝑙𝑎𝑟𝑔𝑒 matrices (right side)
increase the computation intensity w.r.t. BERT𝑏𝑎𝑠𝑒 (left). Notably,
for larger GEMM sizes, the performance of cuSparseLt and Spatha is
similar and approaches the peak for 2:4 sparsity, 2×. However, our
implementation shows better performance on smaller sizes, which
constitutes an interesting feature, since Spatha can probably cover
a more variety of network architectures. Overall, Spatha achieves
up to 1.38× speedup over the vendor library, cuSparseLt.

76
8

15
36

23
04

30
72

38
40

46
08

53
76

61
44

69
12

76
80

84
48

92
16

99
84

10
75

2
11

52
0

12
28

8

GEMM-K

0

20

40

60

80

TF
LO

P
S

/s

GEMM-R=768, GEMM-C=4096 (BERT-base)

76
8

15
36

23
04

30
72

38
40

46
08

53
76

61
44

69
12

76
80

84
48

92
16

99
84

10
75

2
11

52
0

12
28

8

GEMM-K

0

20

40

60

80

TF
LO

P
S

/s

GEMM-R=1024, GEMM-C=4096 (BERT-large)

Spatha cuBLAS cuSparseLt

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

dU
p 

w
.r.

t. 
cu

B
LA

S

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

dU
p 

w
.r.

t. 
cu

B
LA

S

Spatha cuSparseLt

Figure 12: Baseline performance at 50% sparsity (2:4 format)

Figures 13 and 14 compare the performance of Spatha to other
dense and sparse libraries for higher sparsity levels ranging from
50 ∼ 98%. In this context, cuSparseLt SpMM is the reference library
to exploit the 2:4 format on SPTCs. However, cuSparseLt’s results
are strictly limited to 50% sparsity and cannot be executed for the
entire sparsity range because it only supports 2:4 sparse matri-
ces. Since there are no SpMM GPU implementations for arbitrary
N:M sparsity levels, we have considered the following third-party li-
braries for half-precision: Sputnik [9], cuSparse [27], and CLASP [2]
which extends vectorSparse [3] to the latest generations of NVIDIA
GPU architectures. Concerning semi-structured sparse matrices, [2]
focuses on the column-vector format, which supports vector lengths
𝑙 = 2, 4 and 8. Additionally, cuSparse introduces the Blocked-ELL
format to improve the performance of block-wise sparse matrices,
for which we considered the same block lengths (2, 4, 8) as [2, 3]. For
non-structured sparsity, [9] represents the SOTA implementation
over cuSparse+CSR, excluded here for simplicity.

Figure 13 benchmarks are built using the DLMC dataset [10].
Spatha, CLASP, and cuSparse configurations are referenced in the
rows with the notation V:N:M, 𝑣𝑤_𝑙 , and 𝑏𝑤_𝑙 , respectively. In
the absence of sparse matrices compatible with the N:M format,
we have generated the requisite matrices by pruning the original
dense models [8]. Most of the dense matrices in this dataset are
too small (e.g., 64 × 64, from ResNet-50) to fill the GPU resources.
This translates into low arithmetic intensities, hindering peak per-
formance. As Figure 13 shows, when we increase the arithmetic
intensity by means of 𝐶 (batch size), cuSparseLt approaches the 2×
peak [25] (still 1.05× on average for 𝐶 = 2048). However, Sputnik,
cuSparse and CLASP performance shows important limitations.
Existing SpMM kernels are mostly designed considering small mod-
els, where the LHS operand can be a tiny matrix. That influences
the SpMM design, since data can be loaded directly into registers,
but these design decisions represent a serious scalability problem.
However, Spatha is able to scale with the problem size, reaching
speedups of up to ∼ 25× (98% sparsity). The scalability property is
critical with the increasing models size, especially on LLMs.

Figure 14 benchmarks are built using sparsematrices fromweight-
pruned linear layers extracted from BERT. Spatha, cuSparse, and
CLASP configurations have been referenced in the columns of
Figure 14 with the same notation as Figure 13. The first row of
Figure 14 shows the speedup results on sparse matrices extracted
from BERT𝑏𝑎𝑠𝑒 while the second one reports that performance
on BERT𝑙𝑎𝑟𝑔𝑒 . The y-axis is represented in a logarithmic scale to
make the results more readable. As we saw in Figure 13, existing
implementations outperform the dense counterpart version at spar-
sity levels above 80% when the matrices are small. However, when
we evaluate these implementations on medium or big matrices ex-
tracted from larger models (e.g., LLMs), the performance is even
worse, and they only outperform cuBLAS at sparsity levels above
90%. Thus, their kernel design presents scalability issues when the
problem size grows. The fact that Spatha reaches 2× speedup at
50% sparsity enables the achievement of high speedups as the spar-
sity increases, yielding up to 27× in BERT-like matrices. We can
also appreciate that the best performance in our implementation is
reached with the augmentation of arithmetic intensity, peaking for
BERT_𝑙𝑎𝑟𝑔𝑒 with batch size 16. A discussion of how these speedups
affect the global LLMs latency will be presented next.



VENOM: A Vectorized N:M Format for Unleashing the Power of Sparse Tensor Cores SC ’23, November 12–17, 2023, Denver, CO, USA

0.1
0.2
0.3
0.5
1.0
2.0
4.0
6.0

C=256

0.1
0.2
0.3
0.5
1.0
2.0
4.0
8.0

C=512

0.1

0.3
0.5
1.0
2.03.0
6.0

10.015.0
C=1024

0.1
0.3
0.5
1.0
2.03.0
6.0

10.015.0
27.0

C=2048

50 70 80 90 95 98
0.1
0.3
0.5
1.0
2.0
4.0
7.0

50 70 80 90 95 98
0.1
0.3
0.5
1.0
2.0
4.0
8.0

50 70 80 90 95 98
0.1
0.3
0.5
1.0
2.0
3.0
6.0

10.0
15.0

50 70 80 90 95 98

0.1
0.3
0.5
1.0
2.0
4.0
8.0

15.0
27.0

Sparsity [%]

 S
pe

ed
Up

 (l
og

-s
ca

le
) 

   
   

   
   

64
:N

:M
   

   
   

vw
_4

,b
w_

4

  S
pe

ed
Up

 (l
og

-s
ca

le
) 

   
   

   
  1

28
:N

:M
   

   
   

vw
_4

,b
w_

8
cuBLAS CLASP cuSparse cuSparseLt Spatha Sputnik

Figure 13: Speedup results on sparse matrices from the neural networks on the DLMC dataset. The problem size is 𝐴𝑅×𝐾 × 𝐵𝐾×𝐶
where 𝐴 is the sparse matrix. The 𝑅 and 𝐾 sizes are given in the DLMC dataset, while 𝐶 is selected from {256, 512, 1024, 2048}

0.1
0.3
0.5
1.0
2.0
4.06.0

10.015.0
25.0

batch size=8
64:N:M , vw_4 , bw_4

batch size=16
64:N:M , vw_4 , bw_4

batch size=8
128:N:M , vw_8 , bw_8

batch size=16
128:N:M , vw_8 , bw_8

50 70 75 80 90 95 98

0.1
0.3
0.5
1.0
2.0
4.06.0

10.015.0
28.0

50 70 75 80 90 95 98 50 70 75 80 90 95 98 50 70 75 80 90 95 98

Sparsity [%]

Sp
ee

dU
p 

(lo
g 

sc
al

e)
   

   
  B

ER
T-

ba
se

Sp
ee

dU
p 

(lo
g 

sc
al

e)
   

   
 B

ER
T-

la
rg

e

cuBLAS Spatha cuSparseLt Sputnik CLASP cuSparse

Figure 14: Speedup results on BERT𝑏𝑎𝑠𝑒 and BERT𝑙𝑎𝑟𝑔𝑒 with sequence length=512. The notation 𝑉 :N:M represents the vector
length𝑉 used on Spatha, while vw_𝑙 and bw_𝑙 represents the vector length 𝑙 used on CLASP and cuSparse, respectively. The N:M
pattern related to each of the considered sparsity levels are in ascending order of sparsity: 2:4, 2:7, 2:8, 2:10, 2:20, 2:40 and 2:100

7.2 Case study: sparse LLMs
LLMs have revolutioned the NLP field with their unrivaled per-
formance in various domains. Nowadays, these models are widely
used in everyday technologies, such as ChatGPT. Transformer LLMs
typically consist of multiple transformer layers with self-attention.

There are two major sub-components inside a transformer archi-
tecture: the multi head attention (MHA), and the fully connected
feed forward network (FFN). At a higher level, the model size is
determined by different configurable components, such as the head

dimension, the number of heads and the number of layers, depend-
ing on the specific architecture used.

This case study focuses on weight pruning, and explores the on
computational speedups achievable with Spatha. In LLMs weight
tensors are present in Linear Layers, which can be found in both the
MHA and the MLP sub-components. Figure 15 illustrates a pruned
MHA where four GEMM instructions are converted to SpMMs
by sparsifying the corresponding weight tensors. In this study we
demonstrate the efficiency of Spatha on different LLMs. However, it



SC ’23, November 12–17, 2023, Denver, CO, USA Castro R.L., et al.

is important to note that without an efficient implementations of the
SpMM instruction, the final performance of the pruned model can
significantly decrease compared to the dense counterpart version.

WV V

SpMM

Softmax

WO

Dropout

SpMM

WK K

SpMM

WQ Q

SpMM

GEMM GEMM
Sparse matrix

Dense matrix

MHA

Figure 15: Simplified view of a pruned MHA

7.2.1 Second-order pruning at LLMs scale. We used our 2nd order
pruning approach following the V:N:M format to demonstrate its
applicability to the size of LLM models. Specifically, we focused on
BERT𝑏𝑎𝑠𝑒 , one of the most commonly used LLMs, which comprises
12 transformer layers with 110M parameters. As per community
standards [19], we pruned the encoder’s weights of the model (85M).
We evaluate the performance on the SQuAD v.1.1 task, which is
a widely-used benchmark to measure model compression. Table 2
shows the F1 score metric for different pruning techniques includ-
ing: the original N:M one-shot pruning [19], vector-wise pruning
with dense vertical vectors of size 8 (𝑣𝑤_8), and our gradual pruner
for plain N:M (1:N:M), and V:N:M with 𝑉 size of 64 and 128.

LLMs have been shown to be susceptible to minor model per-
turbations that can cause model collapse [17]. However, in these
experiments we considered 75% and 87.5% sparsity levels, repre-
sented by 2:8 and 2:16 ratios, respectively, to demonstrate that our
pruning approach produce robust results on this kind of networks.

Sparsity N:M [19] 1:N:M 64:N:M 128:N:M vw_8

75% (2:8) 88.22 88.61 88.47 87.94 88.55
87.5% (2:16) 85.95 87.73 86.50 85.01 86.90

Table 2: F1 score of BERT𝑏𝑎𝑠𝑒 on the SQuADv1.1. Densemodel
F1=88.43

As we can see, 1:N:M, 64:N:M and 𝑣𝑤_8 slightly improve the
original model accuracy at 2:8 sparsity, while the 128:N:M format
presents a 0.005% accuracy loss. For 2:16 sparsity, these four meth-
ods suffer a slight accuracy loss. Specifically, the plain 1:2:16 format
is able to recover 99% of the original accuracy, while 64:2:16 and
𝑣𝑤_8 pruning recover 98%. In these terms, the 128:2:16 approach is
slightly more restrictive but is still able to recover 96% of the origi-
nal accuracy. Finally, regarding the N:M baselines, 1:𝑁 :𝑀 gradual
pruning shows more robust to sparsity than one-shot N:M [19].

7.2.2 Integration with Pytorch. In order to perform the end-to-end
evaluations, we have streamlined the adoption of Spatha into the
PyTorch training pipeline by integrating it with the STen library
[14]. This integration allows for easy addition of sparsity to existing

models such as BERT and GPT with just a few lines of code. Users
can specify a list of weights to be made sparse in their custom
models, making the process straightforward. To facilitate this, we
have defined a VNMSparsifier class that performs pruning while
adhering to the V:N:M format constraints. Additionally, we have
introduced a VNMTensor class that serves as a container for tensors
in the V:N:M format. When using SpMM with VNMTensor, STen
automatically dispatches it to the efficient implementation in Spatha.
A pseudocode example of this integration is shown in Listing 1.
1 import sten

2 import spatha

3

4 @sten.register_sparsifier_implementation(

5 sparsifier=spatha.VNMSparsifier ,

6 inp=torch.Tensor , out=spatha.VNMTensor)

7 def torch_tensor_to_vnm(sparsifier , tensor , grad_fmt):

8 return sten.SparseTensorWrapper \

9 .wrapped_from_dense(

10 spatha.vnm_sparsifier(

11 sparsifier.n, sparsifier.m,

12 sparsifier.v, tensor),

13 tensor , grad_fmt)

14

15 class Spmm(torch.nn.Module):

16 def __init__(self , original: torch.nn.Linear):

17 self.bias = original.bias

18 w = original.weight.wrapped_tensor

19 self.values = w.values

20 self.columns = w.columns

21 self.metadata = w.metadata

22 def forward(self , input):

23 return spatha.spmm(self.values , self.columns ,

24 self.metadata , input , self.bias , ...)

Listing 1: Pseudocode example of using Spatha and the
V:N:M sparsifier

7.2.3 Sparse Inference. Webenchmark the end-to-end performance
of Spatha on the inference task for different real-world LLMmodels:
BERT (336M), GPT2-large (774M), and GPT-3 (175B), obtained from
HuggingFace. Since GPT-3 is not a public trained model, we have
created a model with the same configuration than this LLM. The
target of this experiment is measuring time performance, thus, we
initialized the weights of the GPT-3 model with random values.
The time results on BERT and GPT2-large have been obtained over
the inference of the entire model, while the results of GPT-3 were
obtained by measuring the inference time of a single encoder to fit
it on a single GPU.

Figure 16 shows the end-to-end evaluation results on the in-
ference of these models. As we have seen in the previous micro
benchmark experiments, increase the arithmetic intensity of the
MMMs improves the utilization of the GPU resources, and also the
final performance of the SpMM. We configured the three models to
the larger configuration possible before achieving out-of-memory
issues. In the case of BERT𝑙𝑎𝑟𝑔𝑒 , this implied the selection of a batch
size (𝑏𝑠) of 32. For GPT2-large, the𝑏𝑠 is 8, and in the case of GPT-3, it
is 1. However, 𝑏𝑠 only affect the𝐶 dimension of the GEMM problem
(𝑅 × 𝐾 ×𝐶), while the two others, 𝑅 and 𝐾 , depend on the model
characteristics. Regarding these sizes, BERT has smaller weight
tensor sizes (the ones sparsified) than GPT2-large, while GPT-3 is
formed by weight tensors much larger than the two other models.



VENOM: A Vectorized N:M Format for Unleashing the Power of Sparse Tensor Cores SC ’23, November 12–17, 2023, Denver, CO, USA

dense 2:4
1:2:4

64:2:8
64:2:16

64:2:32
0

50

100

150

200

250

La
te

nc
y(

m
s)

BERT-large, bs=32

others softmax matmul GEMMs

dense 2:4
1:2:4

64:2:8
64:2:16

64:2:32
0

50

100

150

GPT2-large, bs=8

dense 2:4
1:2:4

64:2:8
64:2:16

64:2:32
0

50
100
150
200
250

GPT3, bs=1

dense 2:4
1:2:4

128:2:8

128:2:16

128:2:32
0

50

100

150

200

250

La
te

nc
y(

m
s)

BERT-large, bs=32

others softmax matmul GEMMs

dense 2:4
1:2:4

128:2:8

128:2:16

128:2:32

Sparsity

0

50

100

150

GPT2-large, bs=8

dense 2:4
1:2:4

128:2:8

128:2:16

128:2:32
0

50

100

150

200

250

GPT3, bs=1

Figure 16: Latency of LLMs inference using cuBlas (dense),
cuSparseLt (2:4), and Spatha (V:N:M, with V in {1, 64, 128})

Due to the previously described reasons, we can see that the best
performance is obtained in the case of GPT-3, where the GEMM
computation contributes to around 80% of the total execution time.

In the case of BERT, tensor contraction time is improved up to
9.95×, while in terms of the whole model, the end-to-end latency is
improved up to a 72%. For GPT2-large, the GEMM time is improved
in 10.84×, since someweight tensors are slightly bigger, but the total
GEMM time is around 50%, so the general improvement is limited
by this factor. However, when we move to GPT-3, the tensor time
contraction is improved up to 11×, but the GEMM time represents
a much higher percentage, meaning a time reduction of up to 3.20×
of the total execution time of a GPT-3 encoder.

8 RELATEDWORK
Semi-structured pruning techniques are a hot research topic. The
column-vector-sparse-encoding [3] seeks to accelerate sparse ker-
nels, and it achieves a speedup between 1.71× and 7.19× over cuS-
PARSE without exploiting SPTCs, and limited to the Volta archi-
tecture. The same authors target the SPTCs in [4] proposing DFSS,
a dynamic N:M sparse attention mechanism and a tailored im-
plementation of the sparse kernels, but limited to the 2:4 format.
The unaligned group-level pruning proposed in [22] increases the
accuracy of this kind of semi-structured pruning techniques by
providing additional flexibility.

NVIDIA cuSparse [27] is a library from NVIDIA that implements
several linear algebra routines for sparse matrices stored in different
compressed formats (COO, CSR and Blocked-Ellpack). It was origi-
nally created to target scientific applications. The cuSparseLt[26]
library from NVIDIA adds support for the exploitation of Sparse-
Tensor Cores (SPTCs) following the N:M format, and giving support
to 1:2 ad 2:4 sparsity patterns (50% of sparsity).

Sputnik [9] library has been specifically designed for DL work-
loads. It uses only the CSR compressed format, and it focuses on
gaining flexibility on the scheduling of workloads by defining a one-
dimensional tiling scheme. This library evolved toVector-Sparse [3]
adding support for the exploitation of Tensor-Core Units. It is based
on using semi-structured 1D pruning, and a special compressed

format called Column-Vector Sparse Encoding. As a continuation,
CLASP [2] offers an SPMM implementation which extends the
support of Vector-Sparse to the Ampere architecture.

In the same line, Magicube [23] is an implementation of the
SPMM and SDDMM routines for quantized sparse matrices. The
kernels are complemented with en efficient online method to trans-
pose the dense matrix.

9 DISCUSSION
a) Spatha application to other tasks. The integration of the Spatha
library into STen, and the implementation of a specific 2nd order
pruning technique to exploit the V:N:M format, enables distributed
sparse training as a direct application of the previously mentioned
contributions. Furthermore, notice that the Spatha library repre-
sents a tool to perform general Sparse Matrix-Matrix Multiplica-
tions, so can be extended to other domains other than DL.

b) Distributed deep learning systems. In this work, we have fo-
cused on large-scale models based on LLMs. However, the Spatha
library represents a generic tool for sparse MMMs. To achieve ef-
ficient large-scale DL on distributed systems, data, operator, and
pipeline parallelism are often combined. In this context, Spatha can
serve as a third-party implementation to accelerate the execution
of these operators in the backend, and mitigate the computation
bottleneck on these systems.

10 CONCLUSION
This paper opens the possibility to use Sparse Tensor Cores (SPTCs)
for arbitrary sparsity levels and N:M patterns. In order to do so, we
defined a new sparse format (V:N:M), a new library to efficiently
exploit the proposed kernel (Spatha), and a second-order pruning
technique that demonstrated the applicability of the proposed for-
mat on real-world deep learningmodels. The experiments show that
this three-fold approach yields up to a 37× speedup over cuBLAS
at the kernel level. Furthermore, the proposed pruning technique
offers a solution scalable to the dimensionality of LLMs, and is
able to achieve high sparsity ratios with minimum impact in loss
(∼ 2% at 2:16 sparsity on BERT models). Finally, we demonstrate
the performance on end-to-end sparsity, achieving speedups on
GPT-3 encoder of up to 3.20× at 2:32 sparsity, what is translated
into a tensor contraction improvement of up to 11×.

ACKNOWLEDGMENTS
This research was supported by the Ministry of Science and In-
novation of Spain (grants PID2019-104184RB-I00 and PID2022-
136435NB-I00, funded byMCIN/AEI/ 10.13039/501100011033, PID2022
also funded by "ERDF A way of making Europe", EU), the Ministry
of Education (predoctoral grant of Roberto L. Castro, FPU19/03974),
by Xunta de Galicia under the Consolidation Program of Competi-
tive Reference Groups (ED431C 2021/30), and ERC grant PSAP, no.
101002047. We also acknowledge the support from CITIC, funded
by Xunta de Galicia and FEDER funds of the EU (Centro de Investi-
gación de Galicia accreditation 2019-2022, ED431G 2019/01). Finally,
we thank the Swiss National Supercomputing Center (CSCS) and
the Centro de Supercomputación de Galicia (CESGA) for the use of
their computers.



SC ’23, November 12–17, 2023, Denver, CO, USA Castro R.L., et al.

REFERENCES
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models Are Few-Shot Learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

[2] Roberto L. Castro, Diego Andrade, and Basilio B. Fraguela. 2023. Probing
the Efficacy of Hardware-Aware Weight Pruning to Optimize the SpMM Rou-
tine on Ampere GPUs. In Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques (Chicago, Illinois) (PACT ’22).
Association for Computing Machinery, New York, NY, USA, 135–147. https:
//doi.org/10.1145/3559009.3569691

[3] Zhaodong Chen, Zheng Qu, Liu Liu, Yufei Ding, and Yuan Xie. 2021. Efficient
Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for
Computing Machinery, New York, NY, USA, Article 78, 14 pages. https://doi.
org/10.1145/3458817.3476182

[4] Zhaodong Chen, Zheng Qu, Yuying Quan, Liu Liu, Yufei Ding, and Yuan Xie.
2023. Dynamic N:M Fine-Grained Structured Sparse Attention Mechanism.
In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). Association
for Computing Machinery, New York, NY, USA, 369–379. https://doi.org/10.
1145/3572848.3577500

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). As-
sociation for Computational Linguistics, Minneapolis, Minnesota, 4171–4186.
https://doi.org/10.18653/v1/n19-1423

[6] Elias Frantar and Dan Alistarh. 2023. SparseGPT: Massive Language Models Can
Be Accurately Pruned in One-Shot. arXiv:2301.00774 [cs.LG]

[7] Elias Frantar, Eldar Kurtic, and Dan Alistarh. 2021. M-FAC: Efficient Matrix-Free
Approximations of Second-Order Information. arXiv:2107.03356 [cs.LG]

[8] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The State of Sparsity in Deep
Neural Networks. arXiv:1902.09574 [cs.LG]

[9] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
Kernels for Deep Learning. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’20). IEEE Press,
Atlanta, Georgia, Article 17, 14 pages.

[10] Google Research. 2020. Deep Learning Matrix Collection. Retrieved March 26,
2023 from https://github.com/google-research/google-research/tree/master/sgk

[11] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. arXiv:1510.00149 [cs.CV]

[12] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,
Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. 2017.
Deep Learning Scaling is Predictable, Empirically. arXiv:1712.00409 [cs.LG]

[13] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
2021. Sparsity in Deep Learning: Pruning and Growth for Efficient Inference and
Training in Neural Networks. J. Mach. Learn. Res. 22, 1, Article 241 (jan 2021),
124 pages.

[14] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Saleh Ashkboos, and Torsten Hoefler.
2023. STen: Productive and Efficient Sparsity in PyTorch. arXiv:2304.07613 [cs.LG]

[15] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. 2021.
Data Movement Is All You Need: A Case Study on Optimizing Transformers. In
Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica
(Eds.), Vol. 3. San Jose, CA, USA, 711–732.

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. arXiv:2001.08361 [cs.LG]

[17] Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky.
2021. BERT Busters: Outlier Dimensions that Disrupt Transformers.
arXiv:2105.06990 [cs.CL]

[18] Eldar Kurtic and Dan Alistarh. 2022. GMP*: Well-Tuned Gradual Magnitude
Pruning Can OutperformMost BERT-Pruning Methods. arXiv:2210.06384 [cs.CL]

[19] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Ben-
jamin Fineran, Michael Goin, and Dan Alistarh. 2022. The Optimal BERT Sur-
geon: Scalable and Accurate Second-Order Pruning for Large Language Models.
arXiv:2203.07259 [cs.CL]

[20] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. 2021. Block
Pruning For Faster Transformers. arXiv:2109.04838 [cs.LG]

[21] Yann LeCun, John Denker, and Sara Solla. 1989. Optimal Brain Damage. In
Proceedings of Neural Information Processing Systems (NIPS’89), D. Touretzky (Ed.),
Vol. 2. Morgan-Kaufmann, Denver, Colorado.

[22] Kwangbae Lee, Hoseung Kim, Hayun Lee, and Dongkun Shin. 2020. Flexible
Group-Level Pruning of Deep Neural Networks for on-Device Machine Learning.
In Proceedings of the 23rd Conference on Design, Automation and Test in Europe
(Grenoble, France) (DATE ’20). EDA Consortium, San Jose, CA, USA, 79–84.

[23] Shigang Li, Kazuki Osawa, and Torsten Hoefler. 2022. Efficient Quantized Sparse
Matrix Operations on Tensor Cores. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC ’22). IEEE
Press, Dallas, Texas, Article 37, 15 pages.

[24] Paul Michel, Omer Levy, and Graham Neubig. 2019. Are Sixteen Heads Really Bet-
ter than One?. In Proceedings of Neural Information Processing Systems (NIPS’19),
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.), Vol. 32. Curran Associates, Inc., Vancouver, Canada.

[25] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh
Venkatesh, Chong Yu, and Paulius Micikevicius. 2021. Accelerating Sparse Deep
Neural Networks. arXiv:2104.08378 [cs.LG]

[26] NVIDIA. 2020. Exploiting NVIDIA Ampere Structured Sparsity with cuSPARSELt.
Retrieved March 26, 2023 from https://developer.nvidia.com/blog/exploiting-
ampere-structured-sparsity-with-cusparselt/

[27] NVIDIA. 2023. The cuSparse Library. Retrieved March 26, 2023 from https:
//docs.nvidia.com/cuda/cusparse/index.html

[28] Ali Pinar and Michael T. Heath. 1999. Improving Performance of Sparse Matrix-
Vector Multiplication. In Proceedings of the 1999 ACM/IEEE Conference on Super-
computing (Portland, Oregon, USA) (SC ’99). Association for Computing Machin-
ery, New York, NY, USA, 30–es. https://doi.org/10.1145/331532.331562

[29] Jeff Pool and Chong Yu. 2021. Channel Permutations for N:M Sparsity. In Proceed-
ings of Neural Information Processing Systems (NIPS’21), M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran
Associates, Inc., Virtual-only Conference, 13316–13327.

[30] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[31] Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. Movement pruning:
Adaptive sparsity by fine-tuning. Proceedings of Neural Information Processing
Systems (NIPS’20) 33 (2020), 20378–20389.

[32] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and
Policy Considerations for Deep Learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 3645–3650. https://doi.org/10.18653/
v1/P19-1355

[33] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk Corporaal. 2023. Dissecting
Tensor Cores viaMicrobenchmarks: Latency, Throughput and Numeric Behaviors.
IEEE Transactions on Parallel and Distributed Systems 34, 1 (jan 2023), 246–261.
https://doi.org/10.1109/tpds.2022.3217824

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention
is All you Need. In Proceedings of Neural Information Processing Systems
(NIPS’17), I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., Long
Beach, CA, USA. https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[35] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019.
Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting,
the Rest Can Be Pruned. arXiv:1905.09418 [cs.CL]

[36] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020. Structured Pruning of Large
Language Models. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational Linguistics,
Online, 6151–6162. https://doi.org/10.18653/v1/2020.emnlp-main.496

[37] Da Yan, Wei Wang, and Xiaowen Chu. 2020. Demystifying Tensor Cores to
Optimize Half-Precision Matrix Multiply. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, NewOrleans, Louisiana, 634–643.
https://doi.org/10.1109/IPDPS47924.2020.00071

[38] Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He,
Weizhu Chen, and Tuo Zhao. 2022. PLATON: Pruning Large Transformer Models
with Upper Confidence Bound of Weight Importance. In Proceedings of the 39th
International Conference on Machine Learning (Proceedings of Machine Learn-
ing Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, Baltimore, Maryland,
26809–26823.

https://doi.org/10.1145/3559009.3569691
https://doi.org/10.1145/3559009.3569691
https://doi.org/10.1145/3458817.3476182
https://doi.org/10.1145/3458817.3476182
https://doi.org/10.1145/3572848.3577500
https://doi.org/10.1145/3572848.3577500
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2107.03356
https://arxiv.org/abs/1902.09574
https://github.com/google-research/google-research/tree/master/sgk
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/2304.07613
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2105.06990
https://arxiv.org/abs/2210.06384
https://arxiv.org/abs/2203.07259
https://arxiv.org/abs/2109.04838
https://arxiv.org/abs/2104.08378
https://developer.nvidia.com/blog/exploiting-ampere-structured-sparsity-with-cusparselt/
https://developer.nvidia.com/blog/exploiting-ampere-structured-sparsity-with-cusparselt/
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1145/331532.331562
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1109/tpds.2022.3217824
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1905.09418
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://doi.org/10.1109/IPDPS47924.2020.00071


Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://doi.org/10.5281/zenodo.8084447

ARTIFACT IDENTIFICATION
Sparse Tensor Cores (SPTCs) have been recently incorporated in
modern architectures of NVIDIA GPUs, enabling the execution
of sparse matrices on Tensor Core Units. However, an important
limitation is that they only support sparse matrices following the
2:4 format, hence 50% sparse matrices. This article proposes (1) the
Vectorized N:M format, abbreviated as V:N:M, which enables the
execution of arbitrary N:M patterns and sparsity levels on SPTCs.
First, to effectively manage the V:N:M format, the computational
artifacts provide a class that specifically addresses it. This class
simplifies the management of V:N:M sparse data and facilitates its
conversion to other matrix representations (both sparse and dense)
for benchmarking and testing purposes.

As a result of the newV:N:M format, this article has the following
set of additional contributions:

(2) A highly optimized template-based library called Spatha
which implements the sparse matrix-matrix multiplication
(SpMM), and efficiently exploits the V:N:M format. Artifacts
demonstrate that Spatha can achieve speedups of up to 37×
over the vendor library for dense MMMs (i.e., cuBLAS). Fur-
thermore, they also show that Spatha provides speedups
of up to 1.38× over the vendor library for 2:4 sparsity (i.e.,
cuSparseLt).

(3) A second-order pruning technique targeting the V:N:M for-
mat scalable to the dimensionality of LLMs, which allows the
sparsification to high-sparsity ratios. Artifacts demonstrate
that LLMs such as BERT, can target high sparsity levels with
minimum increase in loss.

(4) The integration of Spatha on real-world LLMs for end-to-end
inference. The computational artifacts show that Spatha can
achieve a GEMM time reduction of 11× at 2:32 sparsity on
real-world models such as GPT-3.

The software architecture of the computational artifacts is struc-
tured as follows: hyperref

• A centralized benchmarking tool (located in src/) for test-
ing, evaluating, and comparing existent SpMM implemen-
tations. It provides a user-friendly interface that supports a
range of sparse formats (e.g., CSR, CVS, N:M, V:N:M), GEMM
implementations (e.g. cuBLAS, cuBLASLt), and SpMM im-
plementations (e.g. CLASP, Sputnik, Spatha, cuSparseLt).

• A set of sparse libraries (located in include/) that implement
the SpMM routine, which includes Spatha. The software
architecture design of Spatha is described in-depth in the
article.

• A set of scripts to reproduce microbenchmarking evaluations
(located in benchmark/), with the corresponding python
scripts to represent the results obtained (located in plot/)

• The integration of the proposed 2nd order technique into the
SparseML library which allows to easily sparsify neural net-
works by means of pruning recipes (located in sparseml/).

• The integration of Spatha into the Pytorch pipeline in order
to benchmark the end-to-end sparse inference performance
on real-world models (located in end2end/)

The computational artifacts provided can execute all the experi-
ments described in this article and contains scripts to simplify this
process, enabling the easy reproducibility of all the results.

The source code is publicly available at https://github.com/
UDC-GAC/venom

REPRODUCIBILITY OF EXPERIMENTS
The experiment workflow can be divided into three main parts: (1)
kernel benchmarks, (2) application benchmarks for LLMs inference,
and (3) application benchmarks for LLMs sparsification.

(1) All kernel benchmarks were run on a single NVIDIA RTX
3090 GPU. Kernel benchmarks represent an in-depth evaluation of
the V:N:M format and the performance of the Spatha library. To
obtain accurate timing, each kernel has been executed over 100
iterations, preceded by 10 iterations of warm-up. Different kernel
configurations are executed for each problem size to finally select
the best one depending on the input dynamics. All the proposed
benchmarks produce the time in ms, formated as a CSV file that
can be post-processed later to generate the corresponding plots
(see plot/). The detailed content of these benchmarks is the fol-
lowing:

• Spatha performance and overhead of the column-
loc structure (benchmark/run_ablation1.sh). This mi-
crobenchmark analyzes the general performance of the
Spatha library for different V:N:M configurations and differ-
ent problem sizes. Furthermore, it also studies the overhead
of the column-loc structure in the total execution time by
reproducing an ideal scenario where no memory accesses to
this structure are performed. The corresponding plot shows
the performance of the previous configurations in terms of
speedup w.r.t. cuBLAS. This microbenchmark demonstrates
that Spatha can achieve speedups of up to 37× over the ven-
dor library for dense MMM, and that the overhead of the
column-loc structure is negligible in the total time. The re-
sults of this microbenchmark are related to Figure 9 in the
article. The execution time to reproduce this experiment is
about 1 hour.

• Impact of V and wider memory storage instruc-
tions (benchmark/run_ablation2.sh). This microbench-
mark shows the impact of varying the value of 𝑉 in the
proposed format. Furthermore, it also considers different
𝑀 values, or equivalently, different sparsity levels, and two
kinds of SMEM storage instructions: 32 and 128-bit. The
results are depicted in terms of speedup over the vendor li-
brary for dense computation (i.e., cuBLAS). The results show
that the larger the value of 𝑉 , the better the performance.

https://github.com/UDC-GAC/venom
https://github.com/UDC-GAC/venom


Castro, et al.

They also demonstrate that the usage of 128-bit instructions
improves the final performance and that this improvement is
more noticeable when the output writing is more relevant in
the total time, for instance, when the sparsity level increases
and the problem gets smaller. The results of this microbench-
mark are related to Figure 10 in the article. The execution
time to reproduce this experiment is about 5 minutes.

• Baseline performance (benchmark/run_baseline.sh)
This microbenchmark shows the performance of the baseline
SpMM implementation at 2:4 sparsity using different prob-
lem sizes. It compares the performance of Spatha with the
vendor library implementations for both dense (i.e., cuBLAS),
and sparse MMM following the 2:4 format (i.e., cuSparseLt).
This microbenchmark shows the baseline performance of
Spatha and cuSparseLt in terms of speedup and TFLOPs/s
w.r.t. cuBLAS. The results demonstrate that Spatha achieves a
competitive performance w.r.t. cuSparseLt at larger problem
sizes, approaching the 2× peak performance over cuBLAS.
Furthermore, on smaller problem sizes, Spatha also provides
speedups of up to 1.38× over cuSparseLt. The results of this
microbenchmark are related to Figure 12 in the article. The
execution time to reproduce this experiment is about 20
minutes.

• Comparison with other libraries for MMMs
(benchmark/run_spmm_spatha.sh). This benchmark
compares the performance of Spatha with other dense
(e.g., cuBLAS) and sparse libraries (e.g., CLASP, Sputnik,
cuSparseLt) on different problem sizes and different sparsity
levels. Furthermore, it allows to tune different sparse format
configurations such as 𝑉 in the V:N:M format (Spatha),
or the vector length in the vector-wise format (CLASP).
The performance of each library is represented in terms
of speedup w.r.t. cuBLAS. The results show that Spatha
achieves unprecedented performance results, obtaining
up to 27× speedup over the vendor library for dense
computation. The results of this benchmark are related
to Figure 13 in the article. The execution time to reproduce
this experiment is about 3 hours

(2) All application benchmarks for LLMs inference have been con-
ducted after streamlining the adoption of Spatha into the PyTorch
pipeline by integrating it with the STen library. All the bench-
marks were run on a single NVIDIA RTX 3090 GPU. The models to
benchmark have been obtained from Huggingface, and the scripts
provided allow to easily add new models to the evaluation. In or-
der to obtain accurate timing results, each inference process has
been repeated over 30 times, preceded by a warm-up stage. Pytorch
profiling tools have been used to study the impact of each LLM
component separately, which also allows to analyze how the Spatha
library performs in the general process.

• LLM inference latency (end2end/run_inference.sh)
This benchmark evaluates the inference latency of different
sparse LLMs using Spatha, and compares it with the perfor-
mance of the original Pytorch dense models. The script pro-
vided produces the times in ms, formatted as a CSV that can
be used later to plot the results (plot/run_inference.py).
The results show that the larger the impact of the GEMM

instruction in the model, and the higher the arithmetic in-
tensity, the better the performance of the sparse inference.
In that sense, models such as GPT-3, composed of large ma-
trices, can achieve speedups of up to 11× in terms of GEMM,
and 3.20× in the whole encoder inference at 2:32 sparsity.
The results of this benchmark are related to Figure 15 in the
article. The execution time to reproduce this experiment is
about 10 minutes

(3) Application benchmarks for LLMs sparsification focus on demon-
strating the applicability of the V:N:M format on real-world DL
models. The evaluation workflow related to LLMs sparsification is
the following: url

• Energy evaluation study (benchmark/energy.py) This
test performs an energy evaluation study over different prun-
ing approaches and sparsity levels applied to weight linear
layers of real-world LLMs. The following pruning algorithms
are considered in the evaluation: magnitude pruning, vector-
wise pruning, N:M pruning, and V:N:M pruning. Further-
more, for vector-wise and V:N:M pruning, the experiment
evaluates different algorithm configurations that involve the
vector length, and the 𝑉 value, respectively. Energy is cal-
culated as a value between 0 ∼ 1, the higher the better. The
results show by means of a bar plot that V:N:M offers an
intermediate solution between magnitude and vector-wise
pruning, and that this method is robust to large 𝑉 values,
allowing the usage of 𝑉 = 128 and be consistently better
than vector-wise with a vector length of 8. The results of
this benchmark are related to Figure 11 in the article. The
execution time to reproduce this experiment is about 6 min-
utes.

• LLMs sparsification with second-order pruning
This experiment represents a fork of the SparseML
library extended to the V:N:M format, which en-
ables the sparsification of neural networks using
pruning recipes. We can divide the contributions to
this library into three parts: (a) pruning algorithms
(sparseml/sparseml/pytorch/sparsification/pruning),
(b) pruning recipes (sparseml/integrations/
huggingface-transformers/recipes), and
(c) pruning scripts (sparseml/integrations/
huggingface-transformers/scripts). Specifically,
(a) contains all the pruning algorithms implemented and
used in this article, (b) defines different pruning recipes
to sparsify BERT models using the previous algorithms,
and (c) contains a set of scripts that configure and launch
the sparsification process. The result of each experiment is
a sparse network tuned on the SQUAD v.1.1. task, which
is a widely used task to measure model compression
performance. The model accuracy is reported in terms of
F1. Experiments demonstrate that the proposed 2nd order
pruning technique can achieve high-sparsity ratios with
minimum increase in loss. The results of this benchmark
are related to Table 2 in the article. Each sparsification
process was executed with 3 RTX 3090 GPUs. In this
terms, considering that the amount of time to reproduce
the results can be high, we provide three different scripts



VENOM: A Vectorized N:M Format for Unleashing the Power of Sparse Tensor Cores

to alleviate this: (1) sparseml/sparseml_SS1.sh that
contains a subset of the experiments with the most
aggressive configurations using the pair-wise version of the
sparsifier (about 4 days), (2) sparseml/sparseml_SS2.sh
that contains all the sparsity-format configurations but
relaxed with pair-wise version of the sparsifier (about 10
days), and (3) sparseml/sparseml_SS3.sh that contains
all the sparsity-format configurations and performs the
exhaustive search process (about 25 days).

ARTIFACT DEPENDENCIES REQUIREMENTS
We ran all the experiments on NVIDIA RTX 3090 GPU, which
is also the recommended hardware to run the artifact. This GPU
architecture has 82 Streaming Multiprocessor (SM) elements that
share a 6MB L2 cache and 24GB of DRAM. Each SM share a 128KB
L1 cache that can be partially used as Shared MEMory (SMEM).
The software environment is:

• Operating system and version: Ubuntu 20.04.2 LTS
• Compiler and version: GCC 9.4.0
• CUDA Toolkit 11.5 or 11.7
• cuSparseLt v.0.3.0
• Python 3.10
• PyTorch 1.13.1
• cmake 3.16.3

The method provided to reproduce the results involves a pre-
configured software environment within a docker container. For
GPU execution, nvidia-docker installation is necessary, and it
greatly simplifies the process.

Input data (DLmodels and datasets) is automatically downloaded
from public and extensively used repositories such as HuggingFace.

The source code of VENOM is publicly available at: https://github.
com/UDC-GAC/venom
Persistent ID [docker-container]: https://doi.org/10.5281/zenodo.
8084447
Persistent ID [source-code]: https://doi.org/10.5281/zenodo.8085824

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Reproduction of the artifact with container. Please, follow the next
steps to reproduce results with docker container:

Step 1: Download and run the container
Option 1: download an already-built docker image
wget https://zenodo.org/record/8084447/files/venom_container.tar.
gz
Run the container by:
docker load -i venom_container.tar.gz
docker run -it –gpus all venom_container
Option 2: build the container from scratch
git clone –recurse-submodules git@github.com:UDC-
GAC/venom.git && cd venom
docker build -t venom_container .
docker run -it –gpus all –name <your_container_name>
venom_container
Step 2: Compile and run the experiments

Compilation is already inlined in the scripts provided, so you
can jump directly to (1) if you plan to follow the artifact scripts.

However, the instructions to build and install the code are the
following:

Build and install the centralized benchmarking tool:
mkdir build && cd build
# about 1 minute
cmake .. -DCMAKE_BUILD_TYPE=Debug -DCUDA_ARCHS="86"
-DBASELINE=OFF -DIDEAL_KERNEL=OFF -DOUT_32B=OFF &&
make -j 16

Three compiling options are defined to build the following kernel
versions:

• -DBASELINE: baseline Spatha implementation for 2:4 spar-
sity

• -DIDEAL_KERNEL: Spatha N:M implementation without
column-loc structure overhead (ideal situation)

• -DOUT_32B: Spatha N:M implementationwith 32-bit storage
instructions. By default 128-bit instructions are used.

Build and install VENOM as a Python module:
cd end2end
# about 1 minute
./install.sh

(1) To reproduce the results on Fig 9
cd /projects/venom/
# about 1 hour
./benchmark/run_ablation1.sh
python plot/run_ablation1.py

(2) To reproduce the results on Fig 10
cd /projects/venom/
# about 5 minutes
./benchmark/run_ablation2.sh
python plot/run_ablation2.py

(3) To reproduce the results on Fig 12
cd /projects/venom/
# about 20 minutes
./benchmark/run_baseline_a.sh
./benchmark/run_baseline_b.sh
python plot/run_baseline_a.py
python plot/run_baseline_b.py

(4) To reproduce the results on Fig 13
cd /projects/venom/
# about 2 hours
./benchmark/run_spmm_spatha.sh
python plot/run_spmm_spatha.py

(5) To reproduce the results on Fig 15
conda activate end2end
# about 10 minutes
./end2end/run_inference.sh
python3 plot/run_inference.py

(6) To reproduce the results on Fig 11
conda activate end2end

https://github.com/UDC-GAC/venom
https://github.com/UDC-GAC/venom
https://doi.org/10.5281/zenodo.8084447
https://doi.org/10.5281/zenodo.8084447
https://doi.org/10.5281/zenodo.8085824
https://zenodo.org/record/8084447/files/venom_container.tar.gz
https://zenodo.org/record/8084447/files/venom_container.tar.gz


Castro, et al.

python3 benchmark/energy.py

(7) Since reproducing results on Table 2 can take a significant
amount of time, we provide three different scripts to alleviate this
process.
conda activate sparseml_artf
cd sparseml
# Script that contains a subset of the experiments with the most
aggressive configurations using the pair-wise version of the
sparsifier
# about 4 days
./sparseml_SS1.sh
# Script that contains all the sparsity-format configurations but
relaxed with pair-wise version of the sparsifier
# about 10 days
./sparseml_SS2.sh
# Script that contains all the sparsity-format configurations and
performs the exhaustive search process
# about 25 days
./sparseml_SS3.sh

Note: each script in integrations/huggingface-transformers/scripts
has two execution possibilities. Please, uncomment the first line if
you want to use a single-GPU, or the second one with the total
number of GPUs available for multiple-GPU execution.
# single-GPU
CUDA_VISIBLE_DEVICES=0 python3.10
src/sparseml/transformers/question_answering.py
# multi-GPU (3 in this example)
python3.10 -m torch.distributed.launch –nproc_per_node=3
src/sparseml/transformers/question_answering.py

Step 3: check plots
cd /projects/venom/result
scp *.pdf username@hostmachine:/host/path/target


	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Network pruning
	2.2 Sparse Tensor Cores of NVIDIA GPUs

	3 The V:N:M format
	4 Spatha: A High-Performance Sparse Library for Sparse MMM
	4.1 Kernel design

	5 Energy evaluation of V:N:M
	6 Second-order pruning
	6.1 The V:N:M format in 2nd order methods

	7 Evaluation
	7.1 Comparison with existing dense and sparse libraries
	7.2 Case study: sparse LLMs

	8 Related Work
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

