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[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Let. 2007.
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Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

GASNet [2]AM++[1]

[2] D. Bonachea, GASNet Specification, v1.1. Berkeley Technical Report. 2002.

[1] J. J. Willcock et al. AM++: A generalized active message framework. PACT’10.
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INCREMENTING VERTEX RANK
Used in 

PageRank

Atomics always

outperform HTM 

The reason: each transaction always modifies some 

memory cell, increasing the number of conflicts

// start handler
v.rank++;
// finish handler
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Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Yes, we 

can!

Yes, we can!
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Abort and 

rollback 

overheads

The sweetspot! 

(2 vertices)

Majority of 

aborts are due 

to HTM capacity 

overflows (small 

cache size & 

associativity)

Numbers: % of aborts 

due to HTM capacity 

overflows
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„It really depends” .

But... There are some 

regularities

For some algorithms 

(BFS) HTM is better

For others 

(PageRank) 

atomics give more 

performance

AAM establishes a 

whole hierarchy of 

algorithms; check 

the paper 

Size for BG/Q ~100 

>

Size for Haswell ~10

Larger cache & 

associativity 

fewer aborts & 

more coarsening

Larger (L2) cache 

 higher latency

Yes, we can
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BSP engines
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[1] R. Murphy et al. Introducing the Graph 500. CUG’10.

[2] M. Kulkarni et al. Optimistic Parallelism Requires Abstractions. PLDI’07.

[3] S. Seo et al. HAMA: An Efficient Matrix Computation with the MapReduce Framework. CLOUDCOM’10.
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AAM +

[2] Runtimes that exploit 

amorphous data-parallelism

[1] Hand-tuned 

algorithm-specific 

codes

Improving 

Graph500 

design Hadoop-based 

BSP engines

HAMA [3]Distributed 

HPC libraries

PBGL [4]

[1] R. Murphy et al. Introducing the Graph 500. CUG’10.

[2] M. Kulkarni et al. Optimistic Parallelism Requires Abstractions. PLDI’07.

[3] S. Seo et al. HAMA: An Efficient Matrix Computation with the MapReduce Framework. CLOUDCOM’10.

[4] D. Gregor and A. Lumsdaine. The parallel BGL: A generic library for distributed graph computations. POOSC’05.
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[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Erdös-Rényi [2]
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[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] https://snap.stanford.edu
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CONSIDERED TYPES OF GRAPHS
Real-world SNAP graphs [3]

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] https://snap.stanford.edu

Erdös-Rényi [2]

Road networks

Comm. graphs

Social networks

Purchase networks

Citation graphs
Web graphs

https://snap.stanford.edu/
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are in the paper. Here: just a summary.
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HASWELL

Average overall speedup (geometric 

mean) over Graph500: 1.07, Galois: 1.40, 

HAMA ~1000

1.85x on average, up to 4.3x
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CONCLUSIONS

AAM: Combine the 

advantages of HTM and

Active Messages

Detailed performance analysis

Deliver the of hierarchy of 

atomic messages that covers 

various graph algorithms

Illustrate HTM’s advantages 

in performance, next to 

programmability

Model & analyze 

performance tradeoffs

Derive close-to-optimal 

transaction sizes for 

Haswell & BG/Q 

Accelerating state-of-the-art

Average speedup 1.85x

Up to 4x
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Yes, we can!
TRANSFERRING TRANSACTIONS

INCREMENTING RANKS OF VERTICES
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SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in 

PageRank

Atomics always

outperform HTM 

The reason: each transaction always modifies some 

memory cell, increasing the number of conflicts

More 

aborts
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MARKING VERTICES AS VISITED

Startup and 

commit 

overheads

Abort and 

rollback 

overheads

The sweetspot! 

(144 vertices)

Not too many 

aborts due to 

the lack of HW 

resources 

(large cache 

size & 

associativity)

Numbers: % of aborts due to 

the lack of HTM resources + 

memory conflicts
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Average overall speedup over Graph500 

(geometric mean): 1.51 (1.85)

Average 

speedup: 3.20

Average 

speedup: 1.85

Average 

speedup: 1

Best transaction size: 

~24-100 vertices 

accessed

The same 

transaction 

size for all 

graphs

The same 

transaction sizes 

for each graph 

separately
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MARKING A VERTEX AS VISITED

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in BFS, 

SSSP, ...

Atomics (CAS) slightly 

faster than HTM
RTM outperforms other 

(overcontended) targets

Commit 

overheads 

dominate

BG/Q HTM still 

worse  (L1 vs 

L2 matters!)

Very few 

aborts
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