
spcl.inf.ethz.ch

@spcl_eth

MACIEJ BESTA, TORSTEN HOEFLER

Accelerating Irregular Computations with Hardware

Transactional Memory and Active Messages

spcl.inf.ethz.ch

@spcl_eth

LARGE-SCALE IRREGULAR GRAPH PROCESSING

spcl.inf.ethz.ch

@spcl_eth

 Becoming more important [1]

LARGE-SCALE IRREGULAR GRAPH PROCESSING

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Let. 2007.

spcl.inf.ethz.ch

@spcl_eth

 Becoming more important [1]
 Machine learning

LARGE-SCALE IRREGULAR GRAPH PROCESSING

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Let. 2007.

spcl.inf.ethz.ch

@spcl_eth

 Becoming more important [1]
 Machine learning

 Computational science

LARGE-SCALE IRREGULAR GRAPH PROCESSING

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Let. 2007.

spcl.inf.ethz.ch

@spcl_eth

 Becoming more important [1]
 Machine learning

 Computational science

 Social network analysis

LARGE-SCALE IRREGULAR GRAPH PROCESSING

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Let. 2007.

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Simple

protocols

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Simple

protocols

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

Serialization

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Detrimental

performance

Simple

protocols

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

Serialization

An example

graph

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

FINE LOCKS

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

FINE LOCKS

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

FINE LOCKS

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p
Higher performance

possible

SYNCHRONIZATION MECHANISMS

FINE LOCKS

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

Higher performance

possible

SYNCHRONIZATION MECHANISMS

FINE LOCKS

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

Higher performance

possible

SYNCHRONIZATION MECHANISMS

FINE LOCKS

Risk of

deadlocks

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

SYNCHRONIZATION MECHANISMS

ATOMIC OPERATIONS

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

High performance (may

be challenging to get)

SYNCHRONIZATION MECHANISMS

ATOMIC OPERATIONS

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

High performance (may

be challenging to get)

SYNCHRONIZATION MECHANISMS

ATOMIC OPERATIONS

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

High performance (may

be challenging to get)

SYNCHRONIZATION MECHANISMS

ATOMIC OPERATIONS

Subtle issues

(ABA, ...)

Complex access

patterns 

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Non-conflicting

accesses

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Non-conflicting

accesses

C
o
m

m
it

C
o

m
m

it

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Non-conflicting

accesses

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicting

accesses

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with

rollbacks and/or

serialization.

Conflicting

accesses

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with

rollbacks and/or

serialization.

Conflicting

accesses

R
o
llb

a
c
k

R
o
llb

a
c
k

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with

rollbacks and/or

serialization.

Conflicting

accesses

spcl.inf.ethz.ch

@spcl_eth

Simple

protocols

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with

rollbacks and/or

serialization.

Conflicting

accesses

spcl.inf.ethz.ch

@spcl_eth

Software

overheads

Simple

protocols

SYNCHRONIZATION MECHANISMS

SOFTWARE TRANSACTIONAL MEMORY (STM) [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with

rollbacks and/or

serialization.

Conflicting

accesses

spcl.inf.ethz.ch

@spcl_eth

Conflicts solved with

rollbacks and/or HW

serialization.

SYNCHRONIZATION MECHANISMS

HARDWARE TRANSACTIONAL MEMORY (HTM)

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

Simple

protocols

Conflicts solved with

rollbacks and/or HW

serialization.

SYNCHRONIZATION MECHANISMS

HARDWARE TRANSACTIONAL MEMORY (HTM)

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

High

performance?

For graphs? Simple

protocols

Conflicts solved with

rollbacks and/or HW

serialization.

SYNCHRONIZATION MECHANISMS

HARDWARE TRANSACTIONAL MEMORY (HTM)

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

HARDWARE TRANSACTIONAL MEMORY

spcl.inf.ethz.ch

@spcl_eth

HARDWARE TRANSACTIONAL MEMORY

Vega

spcl.inf.ethz.ch

@spcl_eth

HARDWARE TRANSACTIONAL MEMORY

Vega

Rock

spcl.inf.ethz.ch

@spcl_eth

HARDWARE TRANSACTIONAL MEMORY

Vega

BlueGene/Q

Rock

POWER8

spcl.inf.ethz.ch

@spcl_eth

HARDWARE TRANSACTIONAL MEMORY

Vega

BlueGene/Q

Haswell

Rock

POWER8

spcl.inf.ethz.ch

@spcl_eth

HARDWARE TRANSACTIONAL MEMORY

Vega

BlueGene/Q

Haswell

Rock

POWER8

spcl.inf.ethz.ch

@spcl_eth

HARDWARE TRANSACTIONAL MEMORY

Vega

BlueGene/Q

Haswell

Rock

POWER8

They offer

programmability, how

about performance?

spcl.inf.ethz.ch

@spcl_eth

SHARED- & DISTRIBUTED-MEMORY MACHINES

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

[1] Y. Perez et al. Ringo: Interactive Graph Analytics

on Big-Memory Machines. SIGCOMM’14.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

[1] Y. Perez et al. Ringo: Interactive Graph Analytics

on Big-Memory Machines. SIGCOMM’14.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

[1] Y. Perez et al. Ringo: Interactive Graph Analytics

on Big-Memory Machines. SIGCOMM’14.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

[1] Y. Perez et al. Ringo: Interactive Graph Analytics

on Big-Memory Machines. SIGCOMM’14.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

 Rich vertex/edge data

[1] Y. Perez et al. Ringo: Interactive Graph Analytics

on Big-Memory Machines. SIGCOMM’14.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

 Rich vertex/edge data

 Fat nodes with lots of RAM still expensive ($35K for a

machine with 1TB of RAM [1])

[1] Y. Perez et al. Ringo: Interactive Graph Analytics

on Big-Memory Machines. SIGCOMM’14.

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

 Rich vertex/edge data

 Fat nodes with lots of RAM still expensive ($35K for a

machine with 1TB of RAM [1])

[1] Y. Perez et al. Ringo: Interactive Graph Analytics

on Big-Memory Machines. SIGCOMM’14.

Proc qProc p
How to apply

HTM in such a

setting?

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF OUR RESEARCH

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

HTM + Active Messages

= Atomic Active Messages

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Haswell & BG/Q Analysis

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Process p

Process q

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

spcl.inf.ethz.ch

@spcl_eth

ACTIVE MESSAGES (AM)

Memory

Process p

Process q

Handler A

Handler Z

...
A’s addr:

Z’s addr:

GASNet [2]AM++[1]

[2] D. Bonachea, GASNet Specification, v1.1. Berkeley Technical Report. 2002.

[1] J. J. Willcock et al. AM++: A generalized active message framework. PACT’10.

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

AM handlers run as

HTM transactions

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

AM handlers run as

HTM transactions

AM + HTM = ATOMIC ACTIVE MESSAGES

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

BFS frontier

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction

by thread A

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction

by thread A

Transaction

by thread B

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction

by thread A

Transaction

by thread B

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction

by thread A

Transaction

by thread B

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction

by thread A

Transaction

by thread B

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction

by thread A

Transaction

by thread B

Size (the number of vertices) must be

appropriate to minimize overheads

from both commits and rollbacks

spcl.inf.ethz.ch

@spcl_eth

Node A

TRANSFERRING TRANSACTIONS ACROSS NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

TRANSFERRING TRANSACTIONS ACROSS NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

TRANSFERRING TRANSACTIONS ACROSS NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

TRANSFERRING TRANSACTIONS ACROSS NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

TRANSFERRING TRANSACTIONS ACROSS NODES

Transactions must be

appropriately coalesced to

minimize communication

overheads

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

TRANSFERRING TRANSACTIONS ACROSS NODES

Transactions must be

appropriately coalesced to

minimize communication

overheads

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Vertices must be appropriately

relocated to enable execution of a

hardware transaction

Node B

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Vertices must be appropriately

relocated to enable execution of a

hardware transaction

Node B

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

RESEARCH QUESTIONS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

RESEARCH QUESTIONS

How can we

implement AAM

handlers to run

most efficiently?

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

RESEARCH QUESTIONS

What are

performance

tradeoffs related

to HTM?

How can we

implement AAM

handlers to run

most efficiently?

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

RESEARCH QUESTIONS

What are

advantages of

HTM over

atomics for

AAM?

What are

performance

tradeoffs related

to HTM?

How can we

implement AAM

handlers to run

most efficiently?

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

RESEARCH QUESTIONS

What are

advantages of

HTM over

atomics for

AAM?

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

How can we

implement AAM

handlers to run

most efficiently?

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF MACHINES

spcl.inf.ethz.ch

@spcl_eth

 Evaluation on 3 machines

PERFORMANCE ANALYSIS

TYPES OF MACHINES

spcl.inf.ethz.ch

@spcl_eth

 Evaluation on 3 machines

 Intel Haswell server

Commodity machines

PERFORMANCE ANALYSIS

TYPES OF MACHINES

spcl.inf.ethz.ch

@spcl_eth

 Evaluation on 3 machines

 Intel Haswell server

 InfiniBand cluster

Commodity machines

HPC clusters

PERFORMANCE ANALYSIS

TYPES OF MACHINES

spcl.inf.ethz.ch

@spcl_eth

 Evaluation on 3 machines

 Intel Haswell server

 InfiniBand cluster

 IBM BlueGene/Q

Commodity machines Supercomputing machines

HPC clusters

PERFORMANCE ANALYSIS

TYPES OF MACHINES

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM

L1 L1

Deployed in L1

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM

L1 L1

Deployed in L1

32KB per core

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM BlueGene/Q

HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM BlueGene/Q

HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

L1 L1
Deployed in L2

L2

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM BlueGene/Q

HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

L1 L1
Deployed in L2

2MB per core

L2

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM BlueGene/Q

HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

L1 L1
Deployed in L2

2MB per core

16-way

associative
L2

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM BlueGene/Q

HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

L1 L1
Deployed in L2

2MB per core

16-way

associative

The Long

Running

Mode

L2

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM BlueGene/Q

HTM

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

L1 L1
Deployed in L2

2MB per core

16-way

associative

The Long

Running

Mode

The Short

Running

Mode

L2

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

CONSIDERED MECHANISMS

Haswell HTM BlueGene/Q

HTM

Atomics

L1 L1

Deployed in L1

32KB per core

8-way

associative

RTM

(Restricted

Transactional

Memory)

HLE

(Hardware

Lock

Elision)

L1 L1
Deployed in L2

2MB per core

16-way

associative

The Long

Running

Mode

The Short

Running

Mode

L2

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Used in BFS,

SSSP, ...

BG/Q atomics

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 racing accesses/vertex)

Used in BFS,

SSSP, ...

Intel atomics

Intel RTM / HLE

BG/Q atomics

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 racing accesses/vertex)

Used in BFS,

SSSP, ...

Atomics

(CAS) slightly

faster than

HTM

Intel atomics

Intel RTM / HLE

BG/Q atomics

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 racing accesses/vertex)

Used in BFS,

SSSP, ...

Atomics

(CAS) slightly

faster than

HTM

Intel atomics

Intel RTM / HLE

BG/Q atomics

Commit

overheads

dominate

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 racing accesses/vertex)

Used in BFS,

SSSP, ...

Atomics

(CAS) slightly

faster than

HTM

Intel atomics

Intel RTM / HLE

BG/Q atomics

Commit

overheads

dominate

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 racing accesses/vertex)

Used in BFS,

SSSP, ...

Atomics

(CAS) slightly

faster than

HTM

Very few

aborts

Intel atomics

Intel RTM / HLE

BG/Q atomics

Commit

overheads

dominate

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 racing accesses/vertex)

Used in BFS,

SSSP, ...

Atomics

(CAS) slightly

faster than

HTM

Very few

aborts

Intel atomics

Intel RTM / HLE

BG/Q atomics

Commit

overheads

dominate

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Higher contention

(100 racing accesses/vertex)

Used in BFS,

SSSP, ...

Intel atomics

Intel RTM

BG/Q HTM

(short mode)

Intel HLE

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish
handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Higher contention

(100 racing accesses/vertex)

Used in BFS,

SSSP, ...

Intel atomics

Intel RTM

BG/Q HTM

(short mode)

RTM

better

than

atomics

Intel HLE

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish
handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Higher contention

(100 racing accesses/vertex)

Used in BFS,

SSSP, ...

Intel atomics

Intel RTM

BG/Q HTM

(short mode)

RTM

better

than

atomics

BG/Q

HTM still

worse (L1

vs L2

matters!)
Intel HLE

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish
handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Higher contention

(100 racing accesses/vertex)

Used in BFS,

SSSP, ...

Intel atomics

Intel RTM

BG/Q HTM

(short mode)

RTM

better

than

atomics

BG/Q

HTM still

worse (L1

vs L2

matters!)

Still very

few

aborts
Intel HLE

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish
handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Higher contention

(100 racing accesses/vertex)

Used in BFS,

SSSP, ...

Intel atomics

Intel RTM

BG/Q HTM

(short mode)

RTM

better

than

atomics

BG/Q

HTM still

worse (L1

vs L2

matters!)

Still very

few

aborts
Intel HLE

// start handler
if(!v.visited) {
v.visited = 1;

}
// finish
handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK
Used in

PageRank

// start handler
v.rank++;
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK
Used in

PageRank

Atomics always

outperform HTM

// start handler
v.rank++;
// finish handler

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK
Used in

PageRank

Atomics always

outperform HTM

The reason: each transaction always modifies some

memory cell, increasing the number of conflicts

// start handler
v.rank++;
// finish handler

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇

Time to modify N

vertices with atomics:

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇

Time to modify N

vertices with atomics:

Startup

overheads

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇

Time to modify N

vertices with atomics:

Startup

overheads

Overhead

per vertex

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N

vertices with atomics:

Time to modify N vertices

with a transaction

Startup

overheads

Overhead

per vertex

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N

vertices with atomics:

Time to modify N vertices

with a transaction

Startup

overheads

Overhead

per vertex

Startup

overheads

Overhead

per vertex

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N

vertices with atomics:

Time to modify N vertices

with a transaction

Startup

overheads

Overhead

per vertex

Startup

overheads

Overhead

per vertex

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

We predict that:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N

vertices with atomics:

Time to modify N vertices

with a transaction

Startup

overheads

Overhead

per vertex

Startup

overheads

Overhead

per vertex

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

We predict that:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Transaction

startup overheads

dominate

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N

vertices with atomics:

Time to modify N vertices

with a transaction

Startup

overheads

Overhead

per vertex

Startup

overheads

Overhead

per vertex

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

We predict that:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Transaction

startup overheads

dominate

Transactions’ cost

grows slower

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM startup/commit

overheads with larger transaction sizes?

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM startup/commit

overheads with larger transaction sizes?

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Yes, we

can!

Yes, we can!

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(144 vertices)

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(2 vertices)

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(2 vertices)

Numbers: % of aborts

due to HTM capacity

overflows

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(2 vertices)

Majority of

aborts are due

to HTM capacity

overflows (small

cache size &

associativity)

Numbers: % of aborts

due to HTM capacity

overflows

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are

advantages of

HTM over

atomics for

AAM?

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

How can we

implement AAM

handlers most

effectively?

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are

advantages of

HTM over

atomics for

AAM?

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are the optimal

transaction sizes?

Can we amortize

transaction

overheads?

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

AAM establishes a

whole hierarchy of

algorithms; check

the paper 

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

AAM establishes a

whole hierarchy of

algorithms; check

the paper 

Size for BG/Q ~100

>

Size for Haswell ~10

Yes, we can

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

What are

performance

tradeoffs related

to HTM?

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

AAM establishes a

whole hierarchy of

algorithms; check

the paper 

Size for BG/Q ~100

>

Size for Haswell ~10

Yes, we can

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

AAM establishes a

whole hierarchy of

algorithms; check

the paper 

Size for BG/Q ~100

>

Size for Haswell ~10

Larger cache &

associativity 

fewer aborts &

more coarsening

Yes, we can

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

QUESTIONS ANSWERED

„It really depends” .

But... There are some

regularities

For some algorithms

(BFS) HTM is better

For others

(PageRank)

atomics give more

performance

AAM establishes a

whole hierarchy of

algorithms; check

the paper 

Size for BG/Q ~100

>

Size for Haswell ~10

Larger cache &

associativity 

fewer aborts &

more coarsening

Larger (L2) cache

 higher latency

Yes, we can

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

OVERVIEW OF OUR RESEARCH

Evaluation

HTM + Active Messages

= Atomic Active Messages

Coarsening & coalescing

Performance Modeling & Analysis

Performance model

Haswell & BG/Q Analysis

Considered engines and graphs

Accelerating state-of-the-art

Scalability

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED ENGINES

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED ENGINES

[1] Hand-tuned

algorithm-specific

codes

[1] R. Murphy et al. Introducing the Graph 500. CUG’10.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED ENGINES

AAM +

[1] Hand-tuned

algorithm-specific

codes

Improving

Graph500

design

[1] R. Murphy et al. Introducing the Graph 500. CUG’10.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED ENGINES

AAM +

[2] Runtimes that exploit

amorphous data-parallelism

[1] Hand-tuned

algorithm-specific

codes

Improving

Graph500

design

[1] R. Murphy et al. Introducing the Graph 500. CUG’10.

[2] M. Kulkarni et al. Optimistic Parallelism Requires Abstractions. PLDI’07.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED ENGINES

AAM +

[2] Runtimes that exploit

amorphous data-parallelism

[1] Hand-tuned

algorithm-specific

codes

Improving

Graph500

design Hadoop-based

BSP engines

HAMA [3]

[1] R. Murphy et al. Introducing the Graph 500. CUG’10.

[2] M. Kulkarni et al. Optimistic Parallelism Requires Abstractions. PLDI’07.

[3] S. Seo et al. HAMA: An Efficient Matrix Computation with the MapReduce Framework. CLOUDCOM’10.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED ENGINES

AAM +

[2] Runtimes that exploit

amorphous data-parallelism

[1] Hand-tuned

algorithm-specific

codes

Improving

Graph500

design Hadoop-based

BSP engines

HAMA [3]Distributed

HPC libraries

PBGL [4]

[1] R. Murphy et al. Introducing the Graph 500. CUG’10.

[2] M. Kulkarni et al. Optimistic Parallelism Requires Abstractions. PLDI’07.

[3] S. Seo et al. HAMA: An Efficient Matrix Computation with the MapReduce Framework. CLOUDCOM’10.

[4] D. Gregor and A. Lumsdaine. The parallel BGL: A generic library for distributed graph computations. POOSC’05.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED TYPES OF GRAPHS

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED TYPES OF GRAPHS

Synthetic graphs

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED TYPES OF GRAPHS

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED TYPES OF GRAPHS

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Erdös-Rényi [2]

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED TYPES OF GRAPHS
Real-world SNAP graphs [3]

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] https://snap.stanford.edu

Erdös-Rényi [2]

https://snap.stanford.edu/

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED TYPES OF GRAPHS
Real-world SNAP graphs [3]

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] https://snap.stanford.edu

Erdös-Rényi [2]

Road networks

Comm. graphs

Social networks

Purchase networks

Citation graphs
Web graphs

https://snap.stanford.edu/

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (BLUEGENE/Q)

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (BLUEGENE/Q)

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (BLUEGENE/Q)

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (BLUEGENE/Q)

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (BLUEGENE/Q)

Fill the

whole

memory

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (BLUEGENE/Q)

Fill the

whole

memory

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (HASWELL)

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (HASWELL)

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (HASWELL)

Fill the

whole

memory

spcl.inf.ethz.ch

@spcl_eth

ACCELERATING STATE-OF-THE-ART

GRAPH500 + AAM (HASWELL)

Fill the

whole

memory

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

 No, you don’t have to read it. All details

are in the paper. Here: just a summary.

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

1.85x on average, up to 4.3x

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

SCALABILITY ANALYSIS: DISTRIBUTED-MEMORY

spcl.inf.ethz.ch

@spcl_eth

OTHER ANALYSES

spcl.inf.ethz.ch

@spcl_eth

OTHER ANALYSES

spcl.inf.ethz.ch

@spcl_eth

CONCLUSIONS

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

AAM: Combine the

advantages of HTM and

Active Messages

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

AAM: Combine the

advantages of HTM and

Active Messages

Illustrate HTM’s advantages

in performance, next to

programmability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

AAM: Combine the

advantages of HTM and

Active Messages

Deliver the of hierarchy of

atomic messages that covers

various graph algorithms

Illustrate HTM’s advantages

in performance, next to

programmability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

AAM: Combine the

advantages of HTM and

Active Messages

Detailed performance analysis

Deliver the of hierarchy of

atomic messages that covers

various graph algorithms

Illustrate HTM’s advantages

in performance, next to

programmability

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

AAM: Combine the

advantages of HTM and

Active Messages

Detailed performance analysis

Deliver the of hierarchy of

atomic messages that covers

various graph algorithms

Illustrate HTM’s advantages

in performance, next to

programmability

Model & analyze

performance tradeoffs

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

AAM: Combine the

advantages of HTM and

Active Messages

Detailed performance analysis

Deliver the of hierarchy of

atomic messages that covers

various graph algorithms

Illustrate HTM’s advantages

in performance, next to

programmability

Model & analyze

performance tradeoffs

Derive close-to-optimal

transaction sizes for

Haswell & BG/Q

spcl.inf.ethz.ch

@spcl_eth

HTM for graphs in SM & DM environments

CONCLUSIONS

AAM: Combine the

advantages of HTM and

Active Messages

Detailed performance analysis

Deliver the of hierarchy of

atomic messages that covers

various graph algorithms

Illustrate HTM’s advantages

in performance, next to

programmability

Model & analyze

performance tradeoffs

Derive close-to-optimal

transaction sizes for

Haswell & BG/Q

Accelerating state-of-the-art

Average speedup 1.85x

Up to 4x

spcl.inf.ethz.ch

@spcl_eth

Thank you

for your attention

spcl.inf.ethz.ch

@spcl_eth

DISTRIBUTED HTM TRANSACTIONS

spcl.inf.ethz.ch

@spcl_eth

TRANSFERRING TRANSACTIONS

INCREMENTING RANKS OF VERTICES

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM transactions’ transfer

overheads with coalescing?

TRANSFERRING TRANSACTIONS

INCREMENTING RANKS OF VERTICES

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM transactions’ transfer

overheads with coalescing?

Yes, we can!

Yes, we can!
TRANSFERRING TRANSACTIONS

INCREMENTING RANKS OF VERTICES

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in

PageRank

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in

PageRank

Atomics always

outperform HTM

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in

PageRank

Atomics always

outperform HTM

The reason: each transaction always modifies some

memory cell, increasing the number of conflicts

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

INCREMENTING VERTEX RANK

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in

PageRank

Atomics always

outperform HTM

The reason: each transaction always modifies some

memory cell, increasing the number of conflicts

More

aborts

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Numbers: % of aborts due to

the lack of HTM resources +

memory conflicts

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Numbers: % of aborts due to

the lack of HTM resources +

memory conflicts

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

Numbers: % of aborts due to

the lack of HTM resources +

memory conflicts

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(144 vertices)

Numbers: % of aborts due to

the lack of HTM resources +

memory conflicts

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(144 vertices)

Not too many

aborts due to

the lack of HW

resources

(large cache

size &

associativity)

Numbers: % of aborts due to

the lack of HTM resources +

memory conflicts

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)

The same

transaction

size for all

graphs

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)

The same

transaction

size for all

graphs

The same

transaction sizes

for each graph

separately

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)
Average

speedup: 1
The same

transaction

size for all

graphs

The same

transaction sizes

for each graph

separately

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)

Average

speedup: 1.85

Average

speedup: 1
The same

transaction

size for all

graphs

The same

transaction sizes

for each graph

separately

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)

Average

speedup: 3.20

Average

speedup: 1.85

Average

speedup: 1
The same

transaction

size for all

graphs

The same

transaction sizes

for each graph

separately

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

Average overall speedup over Graph500

(geometric mean): 1.51 (1.85)

Average

speedup: 3.20

Average

speedup: 1.85

Average

speedup: 1

Best transaction size:

~24-100 vertices

accessed

The same

transaction

size for all

graphs

The same

transaction sizes

for each graph

separately

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Used in BFS,

SSSP, ...

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in BFS,

SSSP, ...

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in BFS,

SSSP, ...

Atomics (CAS) slightly

faster than HTM

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in BFS,

SSSP, ...

Atomics (CAS) slightly

faster than HTM

Commit

overheads

dominate

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in BFS,

SSSP, ...

Atomics (CAS) slightly

faster than HTM
RTM outperforms other

(overcontended) targets

Commit

overheads

dominate

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in BFS,

SSSP, ...

Atomics (CAS) slightly

faster than HTM
RTM outperforms other

(overcontended) targets

Commit

overheads

dominate

BG/Q HTM still

worse (L1 vs

L2 matters!)

spcl.inf.ethz.ch

@spcl_eth

SINGLE-VERTEX TRANSACTIONS

MARKING A VERTEX AS VISITED

Lower contention

(10 accesses/vertex)

Higher contention

(100 accesses/vertex)

Used in BFS,

SSSP, ...

Atomics (CAS) slightly

faster than HTM
RTM outperforms other

(overcontended) targets

Commit

overheads

dominate

BG/Q HTM still

worse (L1 vs

L2 matters!)

Very few

aborts

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000Average

speedup: 1

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

Average

speedup: 1.85

Average

speedup: 1

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

Average

speedup: 3.20

Average

speedup: 1.85

Average

speedup: 1

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

Average

speedup: 3.20

Average

speedup: 1.85

Average

speedup: 1

Best transaction size:

~2-9 vertices accessed

1.85x on average, up to 4.3x

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

Average

speedup: 3.20

Average

speedup: 1.85

Average

speedup: 1

Best transaction size:

~2-9 vertices accessed

1.85x on average, up to 4.3x

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

Average

speedup: 3.20

Average

speedup: 1.85

Average

speedup: 1

Best transaction size:

~2-9 vertices accessed

1.85x on average, up to 4.3x

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Best transaction size:

~4 vertices

~14 vertices

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

Best transaction size:

~4 vertices

~14 vertices

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

Average overall speedup (geometric

mean) over Graph500: 1.07, Galois: 1.40,

HAMA ~1000

Best transaction size:

~4 vertices

~14 vertices

1.85x on average, up to 4.3x

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

SCALABILITY ANALYSIS: SHARED-MEMORY

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

BLUEGENE/Q

spcl.inf.ethz.ch

@spcl_eth

OUTPERFORMING STATE-OF-THE-ART

HASWELL

